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Ανακοινώσεις / Διευκρινίσεις
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1. Αναπλήρωση την Παρασκευή - 11πμ-1μμ @ Αίθουσα Β' ?



Την προηγούμενη φορά
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● Message Integrity

○ Message Authentication Codes (MACs)

○ CBC-MAC, NMAC, CMAC

● Introduction to Hashing



Σήμερα
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● MAC Attacks

● Hashes Intro

● Hash Constructions

● HMAC

● Hash Tricks/Datastructures
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Integrity Reminder



Message integrity:   MACs

Def:    MAC  I = (S,V)  defined over  (K,M,T) is a pair of algs:

– S(k,m) outputs t in T

– V(k,m,t) outputs `yes’ or `no’

Alice Bob

k k
message  m tag

Generate tag (Sign):
     tag ← S(k, m)

Verify tag:
    V(k, m, tag)  = `yes’

?



Secure MACs
• For a MAC   I=(S,V)  and adv.  A  define a MAC game as:

Def:  I=(S,V)  is a secure MAC if for all “efficient”  A:

         Adv
MAC

[A,I]  =  Pr[Chal. outputs 1]    is “negligible.”

Chal. Adv.
k←K

(m,t)

m
1
 ∈ M

t
1
 ←S(k,m

1
)

b=1    if  V(k,m,t) = `yes’   and  (m,t)  ∉  { (m
1
,t

1
) , … , (m

q
,t

q
) }

b=0   otherwise

b

m
2

, …, m
q

t
2

, …, t
q



raw CBC

Construction 1:   encrypted CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

F(k
1
,

⋅)
tagLet   F: K × X ⟶ X   be a PRP 

Define new PRF   F
ECBC 

: K2 × X≤L ⟶ X 



cascade

Construction 2:   NMAC   (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let   F: K × X ⟶ K   be a PRF 

Define new PRF   F
NMAC 

: K2 × X≤L ⟶ K

> > > >k
t ll fpad

>
k

1

t



Quiz Question #1

Why get the message included in the MAC computation? Let's 
use MAC = E(k

1
, k

2
) and it is clearly not invertible or forgeable.
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Quiz Question #2

Why encrypt the result of the rawCBC or cascade computations? 
We know CBC is safe, so usage here should be secure as well.

11



Why the last encryption step in ECBC-MAC?

Suppose we define a MAC    I
RAW

 =  (S,V)     where

S(k,m) = rawCBC(k,m)

Then   I
RAW

  is easily broken using a 1-chosen msg attack.

Adversary works as follows:

– Choose an arbitrary one-block message   m∈X

– Request tag for m.    Get   t = F(k,m)

– Output  t  as MAC forgery for the 2-block message  (m,  t⊕m)

Indeed:    rawCBC(k, (m,  t⊕m) ) = F(k, F(k,m)⊕(t⊕m) ) = F(k, t⊕(t⊕m) ) = t



What about padding?



What if msg. len. is not multiple of block-size? 

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] ???

⊕⊕

F(k,⋅)

⊕

F(k
1
,

⋅)
tag

m[4]



Template
vertLeftWhite2

CBC MAC padding

Yes, the MAC is secure

No, given tag on msg  m  attacker obtains tag on mll0 
It depends on the underlying MAC

m[0] m[1] m[0] 0000m[1]

Bad idea:   pad  m  with  0’s

Is the resulting MAC secure?

Problem:    pad(m) = pad(mll0)



CBC MAC padding
For security, padding must be invertible !    

len(m
0
)≠ len(m

1
)    ⇒     pad(m

0
) ≠ pad(m

1
)

ISO:   pad with   “1000…00”.    Add new dummy block if needed.

– The “1” indicates beginning of pad.

m[0] m[1] m[0] 100m[1]

m’[0] m’[1] m’[0] m’[1] 1000…000



17

Hashes and 
Resistance



Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps 
an arbitrary binary string to a string of n bits. H : {0, 1}* -> {0,1}n

● Message space much larger than output space
H: M -> T, |M| >> |T|

● Given the output, we want the input to remain secret and also 
make it hard for other inputs to get the same output 
(collision).

● Applications: everywhere (from storing passwords, 
18



Hash Function Properties

Let H: M -> T, |M| >> |T|

● Pre-image resistance. H is pre-image resistant if given a hash 
value h, it should be difficult to find any message m such that 
H(m) = h. In other words, P[H(random m) = h] = 1/|T|.

● Second pre-image resistance (weak collision resistance). H is 
second-preimage resistant if given a message m

1
, it should be 

difficult to find a different m
2
 such that H(m

1
) = H(m

2
).

● (Strong) Collision resistance. H is collision resistant if it is 
difficult to find any two different messages m

1
 and m

2
 such 

that H(m
1
) = H(m

2
).

19



Collision Resistance =>
Second-preimage Resistance

20



Second-preimage Resistance =>
Preimage Resistance?

21

*only true under certain conditions ( |M| >> |T| )



Collision Resistance Definition

Let  H: M →T  be a hash function       (  |M| >> |T|  )

A collision for H is a pair  m
0
 , m

1
 ∈ M  such that:

H(m
0
)  =  H(m

1
)    and    m

0
 ≠ m

1

A function H is collision resistant if for all (explicit) “eff” algs. A:

    Adv
CR

[A,H]  =  Pr[ A outputs collision for H]

is “neg”.

Example:   SHA-256  (outputs 256 bits)



Generic attack on C.R. functions

Let  H: M → {0,1}n  be a hash function    ( |M| >> 2n  )

Generic alg. to find a collision in time   O(2n/2)   hashes

Algorithm:

1. Choose 2n/2  random messages in M:     m
1
, …, m

2
n/2       (distinct w.h.p )

2. For i = 1, …,  2n/2  compute    t
i
 = H(m

i
)    ∈{0,1}n 

3. Look for a collision  (t
i
 = t

j
).    If not found, got back to step 1.

How well will this work?



The birthday paradox
Let   r

1
, …, r

n
 ∈ {1,…,B}   be indep. identically distributed integers. 

Thm:   when  n= 1.2 × B1/2  then   Pr[ ∃i≠j:   r
i
 = r

j
 ] ≥  ½ 

Proof:   (for uniform indep. r
1
, …, r

n
 )



B=106

# samples  n



Generic attack

H: M → {0,1}n  .      Collision finding algorithm:

1. Choose 2n/2  random elements in M:     m
1
, …, m

2
n/2

2. For i = 1, …,  2n/2  compute    t
i
 = H(m

i
)    ∈{0,1}n 

3. Look for a collision  (t
i
 = t

j
).    If not found, got back to step 1.

Expected number of iterations ≈   2

Running time:  O(2n/2)         (space  O(2n/2) )



Sample C.R. hash functions: Crypto++  5.6.0      [ Wei Dai ]

AMD Opteron,   2.2 GHz     ( Linux)

               digest                                           generic
function size (bits) Speed  (MB/sec)    attack time

SHA-1      160          153                  280

SHA-256 256          111                  2128

SHA-512 512           99                       2256

Whirlpool 512           57                       2256

N
IST stan

d
ard

s

* best known collision finder for SHA-1 requires 251 hash evaluations  

https://shattered.io/

https://shattered.io/


28
https://github.com/orgs/community/discussions/12490

https://github.com/orgs/community/discussions/12490


Quantum Collision Finder

Classical
algorithms

Quantum
algorithms

Block cipher
E: K × X ⟶ X

exhaustive search
O( |K| ) O( |K|1/2 )

Hash function
H: M ⟶ T

collision finder
O( |T|1/2 ) O( |T|1/3 )
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Hash Constructions: 
Merkle-Damgård



Collision resistance
Let  H: M →T  be a hash function    ( |M| >> |T| )

A collision for H is a pair  m
0
 , m

1
 ∈ M  such that:

H(m
0
)  =  H(m

1
)    and    m

0
 ≠ m

1

Goal:   collision resistant (C.R.) hash functions

Step 1:  given C.R. function for short messages, 
construct C.R. function for long messages 

Ivan Damgård co-inventor of the 
Merkle-Damgård construction



The Merkle-Damgard iterated construction

Given   h: T × X ⟶ T         (compression function)

we obtain    H: X≤L ⟶ T .            H
i
  -  chaining variables

PB:    padding block
 

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV

(fixed)

H(m)
H

0
H

1
H

2
H

3
H

4

1000…0  ll  msg len

64 bits

If no space for PB 
add another block



MD collision resistance
Thm:   if  h  is collision resistant then so is  H.

Proof:    collision on H   ⇒   collision on h

   Suppose  H(M) = H(M’).    We build collision for  h.

IV  = H
0
     ,     H

1
    ,  …  ,   H

t
  ,     H

t+1
   = H(M)

IV  = H
0
’   ,      H

1
’   ,  …  ,   H’

r
,     H’

r+1
   = H(M’)

h( H
t
, M

t
 ll PB) = H

t+1
 = H’

r+1
 = h(H’

r
, M’

r
 ll PB’)



Suppose    H
t
 = H’

r
    and    M

t
 = M’

r
   and   PB = PB’ 

Then:  h( H
t-1

, M
t-1

) = H
t
 = H’

t
 = h(H’

t-1
, M’

t-1
 )

⇒  To construct C.R. function,   

suffices to construct compression function



The Merkle-Damgard iterated construction

Thm:    h collision resistant   ⇒    H collision resistant

Goal:   construct compression function  h: T × X ⟶ T 

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV

(fixed)

H(m)



Compr. func. from a block cipher
E: K× {0,1}n ⟶ {0,1}n     a block cipher.

The Davies-Meyer compression function:      h(H, m) = E(m, H)⨁H

Thm:   Suppose E is an ideal cipher (collection of |K| random perms.).

Finding a collision h(H,m)=h(H’,m’)  takes O(2n/2) evaluations of (E,D).

E
>

m
i

H
i

⨁

Best possible !!



Template
vertLeftWhite2

Suppose we define     h(H, m) = E(m, H)

Then the resulting h(.,.) is not collision resistant:

to build a collision (H,m) and (H’,m’)  

choose random (H,m,m’) and construct H’ as follows:

H’=D(m’, E(m,H)) 

H’=E(m’, D(m,H)) 

H’=E(m’, E(m,H)) 

H’=D(m’, D(m,H)) 



Case study:   SHA-256

• Merkle-Damgard function 

• Davies-Meyer compression function

• Block cipher:   SHACAL-2 

512-bit key

SHACAL-2
>

256-bit block
256-bit block
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Hashes and 
Passwords



Hash Functions are typically Fast
> 106 / s on modern hardware

40



Some Hash Functions Are Slow

PBKDF2 is ~5 orders of magnitude (100,000x) slower than a 
standard hash function (e.g., MD5). It is also the main 
recommendation for storing passwords (RFC 8018 / 2017).

1. Why is a hash function used for storing passwords?

2. Is slowness an advantage or disadvantage?

41

https://en.wikipedia.org/wiki/PBKDF2


Careful with storing passwords

                             https://hashcat.net/hashcat/

42

https://hashcat.net/hashcat/


We just recovered the MD5 hash of a password: 
d50ba4dd3fe42e17e9faa9ec29f89708 . Can we get the 
original password?

43



Rainbow Tables
A rainbow table is a precompute table for caching the outputs of a hash function. Typically used for cracking 
password hashes. A common defense against this attack is to compute the hashes using a key derivation 
function that adds a "salt" to each password before hashing it, with different passwords receiving different 
salts, which are stored in plain text along with the hash.

44

https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Precomputed
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Salt_(cryptography)


Password Hash Salting

45

Questions:
1. Is it ok to re-use the salt value?
2. Is it ok to use a 3-bit salt value?

No!



The Merkle-Damgard iterated construction

Thm:    h collision resistant   ⇒    H collision resistant

Can we use  H(.)  to directly build a MAC?

h h h

m[0] m[1] m[2] m[3]  ll   PB

h
IV

(fixed)

H(m)



Template
vertLeftWhite2

MAC from a Merkle-Damgard Hash Function

H: X≤L ⟶ T   a C.R. Merkle-Damgard Hash Function

Attempt #1:     S(k, m) = H( k ll m)

This MAC is insecure because:

Given  H( k ll m)   can compute   H( k ll m ll PB ll w )  for any  w.

Given  H( k ll m)   can compute   H( k ll m ll w )  for any  w.

Given  H( k ll m)   can compute   H( w ll k ll m ll PB)  for any  w.

Anyone can compute   H( k ll m )  for any  m.



Standardized method:   HMAC  (Hash-MAC)

Most widely used MAC on the Internet.

H:   hash function.      
       example:   SHA-256    ;    output is 256 bits

Building a MAC out of a hash function:

HMAC:       S( k, m ) =  H(  k⊕opad  ll  H( k⊕ipad ll m )  )



HMAC in pictures

Similar to the NMAC PRF.        

main difference:  the two keys k
1
, k

2
 are dependent

h h

m[0] m[1] m[2]  ll   PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h
>

k⨁opad



HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

• Can be proven under certain PRF assumptions about h(.,.)

• Security bounds similar to NMAC

– Need  q2/|T|  to be negligible    ( q << |T|½ )

In TLS:    must support   HMAC-SHA1-96



Warning:  verification timing attacks  [L’09]

Example: Keyczar crypto library  (Python)       [simplified]

def Verify(key, msg, sig_bytes):

return HMAC(key, msg) == sig_bytes

The problem:    ‘==‘   implemented as a byte-by-byte comparison

• Comparator returns false when first inequality found



Warning:  verification timing attacks  [L’09]

Timing attack:   to compute tag for target message m do:
Step 1:   Query server with random tag
Step 2:   Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1
Step 3:   repeat for all tag bytes until valid tag found

m ,  tag
k

accept or reject

target 

msg  m



Defense #1

Make string comparator always take same time   (Python) : 

return false if  sig_bytes  has wrong length

result = 0        

for x, y in zip( HMAC(key,msg) , sig_bytes):

         result |= ord(x) ^ ord(y)

return result == 0

Can be difficult to ensure due to optimizing compiler.



Defense #2

Make string comparator always take same time   (Python) : 

def Verify(key, msg, sig_bytes):

      mac = HMAC(key, msg)

      return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn’t know values being compared
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Hash Tricks and 
Datastructures



● One-Time Passwords (OTP)

● Data Integrity (tamper-proof)

● Blockchain / micropayments

● Commitment protocols

● and many more

56

Application Uses for Hashes



Interview Question #1

57

You want to prove to another party that you completed an 
action (e.g., you voted) but not show them your action until 
after an amount of time has passed (e.g., after election 
results). How would you implement such a scheme?



Commitment Scheme

58



Interview Question #2
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Two people want to simulate a fair die roll (1–6) over the 
internet, but they don’t trust each other. How can they do it in 
such a way that neither party can cheat?



One-Way Chain Application (Lists)

• One-time password system
• Goal

– Use a different password at every login
– Server cannot derive password for next login

• Solution: one-way chain
– Pick random password P

L
– Prepare sequence of passwords P

i
 = F(P

i+1
 )

– Use passwords P
0

 , P
1
 , …, P

L-1
 , P

L
 

– Server can easily authenticate user

p6 p7p4p3

FFF
p5

F



Chained Hashes

▪ More general construction than one-way hash chains

▪ Useful for authenticating a sequence of data values D
0

 , D
1
 , …, D

N
 

▪ H
*
 authenticates entire chain

DN

DN-1

HN-1

H(DN)

DN-2

HN-2
H( DN-1 || HN-1 )

D0

H0

…

H*



Merkle Hash Trees

● Authenticate a sequence of data values D
0

 , D
1
 , …, D

N
● Construct binary tree over data values

T0

D0 D2 D3D1 D4 D6 D7D5

T1 T2

T3 T4 T5 T6



Merkle Hash Trees II
• Verifier knows T

0
• How can verifier authenticate leaf D

i
 ?

• Solution: recompute T
0

 using D
i
 

• Example authenticate D
2
 , send D

3
 T

3 
T

2 
• Verify T

0
 = H( H( T

3
 || H( D

2
 || D

3 
)) || T

2
 )

T0

D0 D2 D3D1 D4 D6 D7D5

T1 T2

T3 T4 T5 T6



Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!


