AiGAecn #17 - Hash
Functions

FOUNDATIONS

SOFTWARE

EOvikO kal KatrodioTplakd MNMavetmiotApio ABnvwy

SYSTEMS CRYPTO
Eicaywyr otnv Ao@aAcia

@avaong Auyepivog

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (lots of slides from Dan
Boneh @ Stanford and some from Adrian Perrig)

https://users.ece.cmu.edu/~dbrumley/

AVOKOIVWOEIC / AIEUKPIVIOEIC

1. AvatrAipwon tnv MNapaokeun - 11Tu-1upy @ AiBouca B' ?

Tnv TTponNyouuevn popa

o Message Integrity
o Message Authentication Codes (MACs)
o CBC-MAC, NMAC, CMAC

e Introduction to Hashing

MAC Attacks
Hashes Intro

Hash Constructions
HMAC

Hash Tricks/Datastructures

Integrity Reminder

Message integrity: MACs

k- T mesagem g ﬁ

Generate tag (Sign): Verify tag: ,
tag < S(k, m) V(k, m, tag) = yes’

Def: MAC | =(S,V) defined over (K,M,T) is a pair of algs:

— S(k,m) outputs tinT
— V(k,m,t) outputs ‘yes' or 'no’

Secure MACs

e ForaMAC I=(S,V) and adv. A define a MAC game as:

m € M m., ,...,m
t, «<S(k,m,) t, ...t

(m,t)

!
b=1 if V(k,mt)="yes’” and (mt) & {(m,t), ..., (m_ t)}
b=0 otherwise

Def: 1=(S,V) is a secure MAC if for all “efficient” A:
Adv . [Al] = Pr[Chal. outputs 1] s “negligible.”

Construction 1: encrypted CBC-MAC

raw CBC

m|[0]

A A

let F:KxX—X beaPRP

tag

: . w2 <L
Define new PRF Fooncs Kex X=-— X

Construction 2: NMAC (rested mac)

cascade

m[O] m[1] m[3] m[4]

let F: KxX— K be aPRF
Define new PRF F K2 x X3t — K

NMAC *

Quiz Question #1

Why get the message included in the MAC computation? Let's
use MAC = E(k,, k) and it is clearly not invertible or forgeable.

10

Quiz Question #2

Why encrypt the result of the rawCBC or cascade computations?
We know CBC is safe, so usage here should be secure as well.

11

Why the last encryption step in ECBC-MAC?

Suppose we definea MAC | = (SV) where
S(k,m) = rawCBC(k,m)

Then | is easily broken using a 1-chosen msg attack.

Adversary works as follows:
— Choose an arbitrary one-block message me&X
— Request tag form. Get t=F(k,m)
— Output t as MAC forgery for the 2-block message (m, t®m)

Indeed: rawCBC(k, (m, t®m)) = F(k, F(k,m)®(t®m)) = F(k, t&(t®m)) = t

What about padding?

What if msg. len. is not multiple of block-size?

m|[0] ml1]

|

@

w

CBC MAC padding

Bad idea: pad m with O’s

m[0] M[1] | — m[0] m[1] | 0000]

Is the resulting MAC secure?

O Yes, the MAC is secure

O It depends on the underlying MAC

O No, given tag on msg m attacker obtains tag on mll0
O

Problem: pad(m) = pad(mllO)

CBC MAC padding

For security, padding must be invertible |

len(m)#len(m,) = pad(m) # pad(m.)

ISO: pad with “1000...00". Add new dummy block if needed.

— The "17 indicates beginning of pad.

m[0] m([1] — m|[0] m[1] -

m’[0] m’[1] m’[0] m’[1] | 1000...000

l

Hashes and

Resistance

17

Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps
an arbitrary binary string to a string of n bits. H : {0, 1} -> {0,1}"

e Message space much larger than output space
H:M->T, |M| >> |T|

e Given the output, we want the input to remain secret and also
make it hard for other inputs to get the same output
(collision).

e Applications: everywhere (from storing passwords,

18

Hash Function Properties

Let H: M ->T, [M]| >> |T|

e Pre-image resistance. H is pre-image resistant if given a hash
value h, it should be difficult to find any message m such that
H(m) = h. In other words, P[H(random m) = h] = 1/|T]|.

e Second pre-image resistance (weak collision resistance). H is
second-preimage resistant if given a message m,, it should be
difficult to find a different m_ such that H(ml) = H(mz).

e (Strong) Collision resistance. H is collision resistant if it is
difficult to find any two different messages m, and m, such
that H(m_) = H(m,).

19

Collision Resistance =>
Second-preimage Resistance

20

Second-preimage Resistance =>
Preimage Resistance?

*only true under certain conditions ([M]| >> |T|)

21

Collision Resistance Definition

Let H: M —T be a hash function ([M]>>]|T]|)

A collision for His a pair m , m, € M such that:
H(m,) = H(m_) and m #m,

A function H is collision resistant if for all (explicit) “eff” algs. A:
AdeR[A,H] = Pr[A outputs collision for H]

is “‘neg’.

Example: SHA-256 (outputs 256 bits)

Generic attack on C.R. functions

Let H: M — {0,1}" be a hash function (|[M]| >>2")

Generic alg. to find a collision in time 0O(2"2) hashes

Algorithm:
1. Choose 22 random messages in M: m, ..., mZ”/2 (distinct w.h.p)
2. Fori=1,..., 22 compute t =H(m) €{o1)

3. Look for a collision (t. = tj). If not found, got back to step 1.

How well will this work?

The birthday paradox

Let r,...,r €{1,...,.B} beindep.identically distributed integers.

Thm: when n=1.2 x B2 then Pr[3i#: r= rj] = Y

Proof: (for uniform indep.r,, ..., r)

B=10°

Collision probability

09

08

0.7

0.6

0.5

0.4

03

0.2

0.1

| 1 1

1

1000

1500

2000

2500 3000 3500

samples n

4000

4500 5000

Generic attack

H: M —{0,1}" . Collision finding algorithm:
1. Choose 22 random elements in M: m., ...,m,
2. Fori=1,..., 2" compute t=H(m) €{0,1)
3. Look for a collision (t. = tj). If not found, got back to step 1.

n/2

Expected number of iterations = 2

Running time: 0(2"?) (space O(2"?))

spJepuels |SIN

Sample C.R. hash functions: e sso tweioa

AMD Opteron, 2.2 GHz (Linux)

digest generic

function size (bits) Speed (MB/sec) attack time
{ SHA-256 256 111 2128
SHA-512 512 99 2226
Whirlpool 512 57 2220

* best known collision finder for SHA-1 requires 2°! hash evaluations
https://shattered.io/

https://shattered.io/

SHA-256 Support #12490

Unanswered) dezren39 asked this question in General

" dezren39 on Mar 7, 2022

Hi! A year ago it was mentioned that SHA-256 support was on the roadmap:

https://github.community/t/support-for-sha-256-hashes/157493

[was hoping to get an update on this and a timeline. Could we get a beta this year?

N36) R (d 4) (003

https://github.com/orgs/community/discussions/12490

Quantum Collision Finder

Classical Quantum
algorithms algorithms

Block cipher
E: K x X — X o(|K|) o(|K|¥?)

exhaustive search

Hash function
HM—T o(|T|Y?) o(|T|*?)
collision finder

Hash Constructions:

Merkle-Damgard

30

Collision resistance
y oo

Let H: M —T be a hash function (|M]|>>|T|) oo

A collision for H is a pair m,, m, € M such that:
H(m,) = Hm) and m #m,
Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for short messages,
construct C.R. function for long messages

lvan Damgard co-inventor of the
Merkle-Damgard construction

The Merkle-Damgard iterated construction

m[O0] m[1] m[2] m[3] I PB
v H(m)
(fixed) Hy : H,
Given h: TxX—T (compression function)
we obtain H: Xst— T H. - chaining variables

PB: padding block 1000...0 Il msg len If no space for PB
add another block

64 bits

MD collision resistance

Thm: if h is collision resistant then so is H.
Proof: collisiononH = collisiononh

Suppose H(M) =H(M’). We build collision for h.

V=H , H ,..,H, H_ =HWM)

t+1

V=H', H’,..,H, H_ =HM)

r r+

h(H,M IIPB)=H _=H _=h(H M IlPB)

Suppose H =H" and M =M’ and PB=PPB

Then: h(H_,M _)=H =H =h(H , M)

t-1’

= To construct C.R. function,

suffices to construct compression function

The Merkle-Damgard iterated construction

m[O0] m[1] m[2] m[3] I PB

IV H(m)

(fixed)

Thm: h collision resistant = H collision resistant

Goal: construct compression function h: TxX—T

Compr. func. from a block cipher
E: Kx {0,1}" — {0,1}" a block cipher.

The Davies-Meyer compression function: h(H, m) = E(m, H)®@H

| >>

E

>

~ ®
\4

Thm: Suppose E is an ideal cipher (collection of |K| random perms.).
Finding a collision h(H,m)=h(H’,m’) takes O(2"/?) evaluations of (E,D).

Best possible !!

Suppose we define h(H, m) = E(m, H)

Then the resulting h(.,.) is not collision resistant:
to build a collision (H,m) and (H’,m’)

choose random (H,m,m’) and construct H’ as follows:

H’=D(m’, E(m,H))
H’=E(m’, D(m,H))
H'=E(m’, E(m,H))
H’=D(m’, D(m,H))

O O O O

Case study: SHA-256

 Merkle-Damgard function
* Davies-Meyer compression function
* Block cipher: SHACAL-2

512-bit key

N
R SHACAL-2 756-bit block
256-bit block

Hashes and

Passwords

39

Hash Functions are typically Fast
>10° / s on modern hardware

Some Hash Functions Are Slow

PBKDF2 is ~5 orders of magnitude (100,000x) slower than a

standard hash function (e.g., MD5). It is also the main
recommendation for storing passwords (RFC 8018 / 2017).

1. Why is a hash function used for storing passwords?

2. Is slowness an advantage or disadvantage?

41

https://en.wikipedia.org/wiki/PBKDF2

Careful with storing passwords

https://hashcat.net/hashcat/

COMPONENT PERCENTILE RANK # COMPATIBLE PUBLIC RESULTS H/S (AVERAGE)

NVIDIA GeForce RTX 4090 96th 28 152416197859 */- 6710203881
MSI NVIDIA GeForce RTX 4090 96th 5 151733333333 V- 9197ehant
Zotac NVIDIA GeForce RTX 2080 Ti 90th 3 130494289583 */- 210426329
NVIDIA GeForce RTX 4080 87th 14 94912651871 "~ 00T
Gigabyte NVIDIA GeForce RTX 3070 82nd 4 80013741667 */- 228221564
NVIDIA GeForce RTX 3090 Ti 81st 4 75184916667 */- 3931783726
Gigabyte NVIDIA GeForce RTX 4070 Ti 81st 4 74021876667 */- 163854598
Mid-Tier 75th < 70991033333

NVIDIA GeForce RTX 3090 75th 39 70867552587 */- 3204264127
AMD Radeon RX 7900 XTX 73rd 4 69163372857 */- 1246558898
NVIDIA GeForce RTX 3080 Ti 72nd 14 67781101282 */- 41391882
AMD Radeon RX 7900 XT 67th 5 61566224762 */- 753630529
NVIDIA GeForce RTX 3080 66th 19 60284979323 */- 871234740
AMD Radeon RX 6900 XT 63rd 9 58596096296 */- 1383732339
AMD Radeon RX 6800 XT 56th 6 52565837302 */- 1856012111
NVIDIA GeForce RTX 2080 SUPER 54th 3 43272383333

NVIDIA GeForce RTX 3070 Ti 52nd 12 42679897024 */- 218910662

https://hashcat.net/hashcat/

We just recovered the MD5 hash of a password:
d50ba4dd3fed42e17e9faa9ec29t89708 . Can we get the
original password?

Rainbow Tables

A rainbow table is a precompute table for caching the outputs of a hash function. Typically used for cracking

password hashes. A common defense against this attack is to compute the hashes using a key derivation
function that adds a "salt” to each password before hashing it, with different passwords receiving different

salts, which are stored in plain text along with the hash.

m

m

m l
m l

(B]
b B B e SR |
[k.2 B BT
[\ME !:‘ jil";/

-k’l,_l] f:n f:l f:l k_:y_'l
st
(R & L8
[l 8 B, |

m X t

f1

f2
e — —

S

Iz
_kmt.l . TEe

[t~
=g kit

ft—1

= I"mt.l _

44

https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Precomputed
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Salt_(cryptography)

Password Hash Salting

Hashing
User Password Salt Added Algorithm
Apple — AppleyrtZd — Q —
yrtZd
\ Password Store

£53107b3a79cc2f18b9526aa6bd40c34

yrtZd

Questions:
1. lIs it ok to re-use the salt value?
2. s it ok to use a 3-bit salt value?

Hashed Password + Salt

45

The Merkle-Damgard iterated construction

m[O0] m[1] m[2] m[3] I PB

IV H(m)

(fixed)

Thm: h collision resistant = H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: X*— T a C.R. Merkle-Damgard Hash Function

Attempt #1.:

S(k, m) = H(k Il m)

This MAC is insecure because:

O Given
O Given
O Given

(
(

(

K

K

K

m) can compute
m) can compute

m) can compute

(w
(ki

(ki

| k

m

m

m || PB) for any w.
w) forany w.

PBIllw) forany w.

O Anyone can compute H(klillm) forany m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.
example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

HMAC: S(k,m)= H(keopad Il H(keipadlim))

HMAC in pictures

k@ipad m[1] m[2] Il PB
IV
(fixed)
k@opad
|
IV
(fixed)

Similar to the NMAC PRF.

main difference: the two keys k., k, are dependent

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF
* Can be proven under certain PRF assumptions about h(.,.)
* Security bounds similar to NMAC

— Need g%/|T| to be negligible (q<< |T|”)

In TLS: must support HMAC-SHA1-96

Warning: verification timing attacks oo

Example: Keyczar crypto library (Python) [simplified]

def Verify(key, msg, sig_bytes):
return HMAC(key, msg) == sig_bytes
The problem: ‘== implemented as a byte-by-byte comparison
 Comparator returns false when first inequality found

Warning: verification timing attacks os

m, tag Léfff;::
> |0 k
&) . accept or reject i}/

Timing attack: to compute tag for target message m do:

Step 1: Query server with random tag

Step 2: Loop over all possible first bytes and query server.
stop when verification takes a little longer than in step 1

Step 3: repeat for all tag bytes until valid tag found

target
msg M

Defense #1

Make string comparator always take same time (Python):

return false if sig_bytes has wrong length

result=0

for x, y in zip(HMAC(key,msg) , sig_bytes):
result |= ord(x) ord(y)

return result ==

Can be difficult to ensure due to optimizing compiler.

Defense #2

Make string comparator always take same time (Python):

def Verify(key, msg, sig_bytes):
mac = HMAC(key, msg)
return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn’t know values being compared

Hash Tricks and

Datastructures

Application Uses for Hashes

One-Time Passwords (OTP)
Data Integrity (tamper-proof)
Blockchain / micropayments
Commitment protocols

and many more

56

Interview Question #1

You want to prove to another party that you completed an
action (e.g., you voted) but not show them your action until
after an amount of time has passed (e.g., after election

results). How would you implement such a scheme?

57

Commitment Scheme

1. Commit

Generate a Distribute
unique hash your hash

f t to the public
—] —
o

Wait for all votes to be committed....

2. Reveal
nglggi The public
Yh o verifies that your
__— to the public vote & hash match
= —
4

&:Count votes and declare winner! &

58

Interview Question #2

Two people want to simulate a fair die roll (1-6) over the
internet, but they don't trust each other. How can they do it in
such a way that neither party can cheat?

59

One-Way Chain Application (Lists)

One-time password system
Goal

- Use a different password at every login
- Server cannot derive password for next login

Solution: one-way chain
- Pick random password P
- Prepare sequence of passwords P. = F(Pi+1)

- Use passwords P, . P, ...P . P

- Server can easily authenticate user

Chained Hashes

= More general construction than one-way hash chains

" Useful for authenticating a sequence of data values D, D, , ... D

- authenticates entire chain

Merkle Hash Trees

o Authenticate a sequence of datavalues D, D, , ... D
« Construct binary tree over data values

N

/VTO\

T

% P AR N
T T

x A y

D1

TZ
T T
3 4 5
A % A%
D D, D,

0 D

5 D

4

Merkle Hash Trees Il

- Verifier knows TO

- How can verifier authenticate leaf D. ?
- Solution: recompute TO using Di

- Example authenticate D, send

- Verify Ty = HCHOT, ITHCD, D D)

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

