AlGAecn #17 -
Authenticated Encryption
and Asymmetric Crypto SOFTWARE

FOUNDATIONS

EOvikO kal KatrodioTplakd MNMavetmiotApio ABnvwy

SYSTEMS CRYPTO

Eicaywyn otnv AcpaAcia

@avaong Auyepivog

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (lots of slides from Dan
Boneh @ Stanford!)

https://users.ece.cmu.edu/~dbrumley/

Tnv TTponNyouuevn popa

Hashes Intro
Hash Constructions

HMAC

Hash Tricks/Datastructures

AVOKOIVWOEIC / AIEUKPIVIOEIC

e [lwc Asitoupyei 10 password salt;

Password Salt

Password Hash Salting

Hashing
User Password Salt Added Algorithm Hashed Password + Salt
Apple — AppleyrtZd — Q —
yrtZd
\ Password Store

£53107b3a79cc2f18b9526aa6bd40c34

yrtZd

Questions:
1. lIs it ok to re-use the salt value?
2. s it ok to use a 3-bit salt value?

2 NUEPQ

e Authenticated Encryption (AuthEnc)

e Asymmetric/Public Key Cryptography
o Merkle's Puzzles
o Diffie-Hellman

o RSA

e

S DIDYOU JUST.SAV)¢
“LAST.0AY,0F CRYPTO?-

Hopefully!

Authenticated

Encryption

Recap: the story so far

Confidentiality: semantic security against a CPA attack
* Encryption secure against eavesdropping only

Integrity:
e Existential unforgeability under a chosen message attack
e CBC-MAC, HMAC, *MAC

Can we combine them: encryption secure against tampering
* Ensuring both confidentiality and integrity

... but first, some history

Authenticated Encryption (AE): introduced in 2000 [ky’00, BN’00]

Crypto APIs before then: (e.g. MS-CAPI)

* Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
* Provide API for MAC (e.g. HMAC)

Every project had to combine the two itself without
a well defined goal

* Not all combinations provide AE ...

Combining MAC and ENC (CCA)

Encryption key k.. MAC key = k;

Option 1: (SSL) S(k;, m) E(k, , mlltag)

Iimsgim — [msgimi | tag | —

Option 2: (IPsec)

| E(k_, m) S(k;, ¢)
TR msgm = ag
correct

Option 3: (SSH) £(k,, m) S(k,, m)

S mgm = tag

A.E. Theorems

Let (E,D) be CPA secure cipher and (S,V) secure MAC. Then:
1. Encrypt-then-MAC: always provides A.E.

1. MAC-then-encrypt: may be insecure against CCA attacks

however: when (E,D) is rand-CTR mode or rand-CBC
M-then-E provides A.E.

Standards (at a high level)

e GCM: CTR mode encryption then CW-MAC
(accelerated via Intel’s PCLMULQDQ instruction)

 CCM: CBC-MAC then CTR mode encryption (802.11i)
e EAX: CTR mode encryption then CMAC

All support AEAD: (auth. enc. with associated data). All are

nonce-based.
encrypted
il

associated data encrypted data

authenticated

An example APl (OpenSSL)

int AES_GCM_Init(AES_GCM_CTX *ain,

nar *nonce, unsigned long noncelen,

unsignec

unsignec

C

C

nar *key, unsigned int klen)

int AES_GCM__EncryptUpdate(AES GCM_ CTX *3,

unsignec

unsignec

unsignec

C

C

C

har *aad, unsigned

nar *data, unsigned

ong aadlen,

long datalen,

nar *out, unsigned

ong *outlen)

The TLS Record Protocol (tis1.2)

HDR TLS record
>
k
Ko p K
Uonldlrectlonal keys: kb and k
—~S s—b
Stateful encryption:
 Each side maintains two 64-bit counters: ctr . Ctr

b-s s—b
* |nit. to O when session started. ctr++ for every record.

 Purpose: replay defense

TLS record: encryption (CBC AES-128, HMAC-SHA1)

k. _=(k

b_s (mac’ enc)

type Il ver Il len

Browser side enc(k___, data, ctr,) :

step 1:

step 2:
step 3:
step 4.

- S

tag — S(k., | ++ctr, I header |I data])

pad [headerlldatalltag] to AES block size

CBC encrypt with k__and new random IV
prepend header

TLS record: decryption (CBC AES-128, HMAC-SHA1)

Server side dec(k _ , record, ctrb_is) :
step1: CBCdecrypt record using k_
step 2: check pad format: send bad_record mac if invalid

step 3: check tag on [++ctrbﬁ>S Il header |l data]
send bad record mac if invalid

Provides authenticated encryption
(provided no other info. is leaked during decryption)

Bugs in older versions (priorto TLS 1.1)

IV for CBC is predictable: (chained IV)
IV for next record is last ciphertext block of current record.

Not CPA secure. (a practical exploit: BEAST attack)

Padding oracle: during decryption
if pad is invalid send decryption failed alert
if mac is invalid send bad _record mac alert
= attacker learns info. about plaintext (various attacks possible)

Lesson: when decryption fails, do not explain why

Leaking the length

The TLS header leaks the length of TLS records
* Lengths can also be inferred by observing network traffic

For many web applications, leaking lengths reveals sensitive info:

* |n tax preparation sites, lengths indicate the type of return being
filed which leaks information about the user’s income

* |n healthcare sites, lengths leaks what page the user is viewing
* |n Google maps, lengths leaks the location being requested

No easy solution

Asymmetric / Public

Key Cryptography

Key manhagement

Problem: nusers. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better solution

Online Trusted 3" Party (TTP)

TE

rs3
T
Iy TP

=\

It

.J@F T

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (k) Alice (k,) ITP
“Alice wants key with Bob” N
choose
E(K,, "A, B" || K..) random k
. - AB
ticket
< ticket = E(KB, "A,B" || KAB)
kk k

AB AB (E,D) a CPA-secure cipher

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: E(k,, “A,B"Ilk,) ; E(k, “A B"Ilk,_)

A’ B’

(E,D) is CPA-secure =
eavesdropper learns nothing about k.

Note: TTP needed for every key exchange, knows all session keys.

(basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob
— For example a book order

Attacker replays session to Bob
— Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an online trusted 3™ party?
Answer: vyes!

Starting point of public-key cryptography:

 Merkle (1974), Diffie-Hellman (1976), RSA (1977)

* More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Merkle Puzzles

26

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

 For now: security against eavesdropping only (no tampering)

>

Alice b
=

<=

eavesdropper ??

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974

Answer: yes, but very inefficient

Main tool: puzzles

* Problems that can be solved with some effort
* Example: E(k,m) a symmetric cipher with k € {0,1}'®

— puzzle(P) = E(P, “message”) where P=0"llb ...b_

— Goal: find P bytrying all 232 possibilities

Merkle puzzles

Alice: prepare 23?2 puzzles

* For i=1, ..., 2°* choose random P. €{0,1}** and x, k €
{0’1}128
set puzzle «— E(0*IIP, “Puzzle#x” Il k.)

* Send puzzle , ..., puzzle ,,, toBob

Bob: choose a random puzzlej and solve it. Obtain (xj, kj).
 Send X to Alice

Alice: lookup puzzle with number X;. Use kj as shared secret

In a figure

puzzle , ..., puzzle_ .
Alice
X.
- J

k.

J

Alice’s work: O(n) (prepare n puzzles)
Bob’s work: O(n) (solve one puzzle)

Eavesdropper’s work: - (e.g. 2°* time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?
Answer: unknown

But: roughly speaking,

qguadratic gap is best possible if we treat cipher as

a black box oracle [IR’89, BM’09]

The
Diffie-Hellman (DH)

Protocol

32

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

 For now: security against eavesdropping only (no tampering)

>

Alice b
=

<=

eavesdropper ??

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informaily)

Fix a large prime p (e.g. 600 digits)
Fix an integer g in {1, ..., p}

Alice Bob

choose random ain{l,...,p-1} choose random b in {1,...,p-1}

A =g° (mod p)

>

B = g° (mod p)

-«

b
8" ot = (€ = oy =6 o) (D

Secu rity (much more on this later)

Eavesdropper sees: p, g, A=g®(modp), and B=g” (mod p)

Can she compute g® (modp) ??

More generally: define DH (g, g?)=g® (mod p)

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n bits long.
Best known algorithm (GNFS): runtime exp(O(v/n))

Elliptic Curve
cipher key size modulus size Size
80 bits 1024 bits 160 bits
128 bits 3072 bits 256 bits
256 bits (AES) 15360 bits 512 bits

As a result: slow transition away from (mod p) to elliptic curves

www.google.com

The identity of this website has been verified by Thawte SGC
CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit
encryption.

The connection uses TLS 1.0.

The connection is encryptefl using RC4_128, with SHAL1 for
message authentication arj]d ECDHE_RSA as the key

exchange mechanism.

Elliptic curve
Diffie-Hellman

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice MiTM Bob

A'=g* (mod p)

-«

. __ B=g’(modp)

Key = g*® (mod p)

Public Key

Cryptography

Establishing a shared secret

Goal: Alice and Bob want shared secret, unknown to eavesdropper

 For now: security against eavesdropping only (no tampering)

>

Alice b
>

<=

eavesdropper ??

This segment: a different approach

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
* G(): randomized alg. outputs a key pair (pk, sk)

 E(pk, m): randomized alg. that takes m &M and outputs c €C

* D(sk,c): det. alg. that takes cEC and outputs mEM or L

Consistency: V¥V (pk, sk) output by G:
VmeM: D(sk, E(pk, m))=m

Public key encryption

Bob: generates (PK, SK) and gives PK to Alice

Alice Bob

E = D

I |
pk sk

Applications

Session setup (for now, only eavesdropping security)

Alice ok Bob
Generate (pk, sk)

choose random x

E(pk, x) (e.g. 48 bytes)

X

Non-interactive applications: (e.g. Email)
* Bob sends email to Alice encrypted using pk_.
* Note: Bob needs pkalice (public key management)

Trapdoor functions (TDF)

Def: atrapdoor func. X—Y is a triple of efficient algs. (G, F, F!)
* G(): randomized alg. outputs a key pair (pk, sk)

* F(pk,-): det. alg. that defines a function X—Y

* F'(sk,-): definesafunction Y— X thatinverts F(pk,-)

More precisely: WV (pk, sk) output by G
VxEX: Fi(sk, F(pk, x))=x

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:
— SSL/TLS: certificates and key-exchange
— Secure e-mail and file systems

... many others

The RSA trapdoor permutation

G(): choose random primes p,q=1024 bits. Set N=pq.
choose integers e,d sit. erd=1 (mod ¢(N)) where d(N)=(p-1)(q-1)
output pk=(N,e) , sk=(N,d)

Flpk,x): 2 — Z 5 RSAK)=x* (i Z

F1(sk,y)=y%; y® = RSA(x)? = xe@ = xKONIL = ((@(N))k. y o
X

The RSA Assumption

RSA assumption: RSAis one-way permutation

For all efficient algs. A:

where p,g < n-bit primes,

Pr[A(N,e,y) = yV/¢] < negligible

Ne—pq, vz

Review: RSA pub-key encryption (sostq)

(ES, DS): symmetric enc. scheme providing auth. encryption.
H: Z,— K where Kis key space of (E D)

e G(): generate RSA params: pk=(N,e), sk=(N,d)

* E(pk, m): (1) choose random xinZ_
(2) y < RSA(x) =x® , k<« H(x)
(3) output [y, E_(km))

* D(sk, (y,c)): output D (H(RSA™(y)), c)

Textbook RSA is insecure

Textbook RSA encryption:
— publickey: (N,e) Encrypt: c¢e—m*® (in Z)

— secret key: (N,d) Decrypt: ¢®—m

Insecure cryptosystem !!

— |Is not semantically secure and many attacks exist

= The RSA trapdoor permutation is not an encryption scheme |

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

