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Την προηγούμενη φορά
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● Hashes Intro

● Hash Constructions

● HMAC

● Hash Tricks/Datastructures



Ανακοινώσεις / Διευκρινίσεις
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● Πως λειτουργεί το password salt;
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Password Salt



Password Hash Salting
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Questions:
1. Is it ok to re-use the salt value?
2. Is it ok to use a 3-bit salt value?

No!



Σήμερα
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● Authenticated Encryption (AuthEnc)

● Asymmetric/Public Key Cryptography

○ Merkle's Puzzles

○ Diffie-Hellman

○ RSA

Hopefully!
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Authenticated 
Encryption



Recap:  the story so far

Confidentiality:    semantic security against a CPA attack

• Encryption secure against eavesdropping only

Integrity:

• Existential unforgeability under a chosen message attack

• CBC-MAC,  HMAC, *MAC

Can we combine them:   encryption secure against tampering

• Ensuring both confidentiality and integrity 



… but first,  some history

Authenticated Encryption (AE):     introduced in 2000    [KY’00, BN’00]

Crypto APIs before then:     (e.g.   MS-CAPI)

• Provide API for CPA-secure encryption  (e.g. CBC with rand. IV)

• Provide API for MAC  (e.g. HMAC)

Every project had to combine the two itself without 
a well defined goal

• Not all combinations provide AE …



Combining MAC and ENC   (CCA)
Encryption key  kE.      MAC key = kI

Option 1:   (SSL)

Option 2:   (IPsec)

Option 3:   (SSH)

msg  m msg  m tag
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A.E.   Theorems

Let   (E,D)   be CPA secure cipher   and   (S,V) secure MAC.    Then:

1. Encrypt-then-MAC:   always provides  A.E.

1. MAC-then-encrypt:   may be insecure against CCA attacks

however:    when  (E,D)  is  rand-CTR mode or rand-CBC
M-then-E  provides  A.E. 



Standards  (at a high level)

• GCM:     CTR mode encryption  then   CW-MAC

(accelerated via Intel’s PCLMULQDQ instruction)

• CCM:     CBC-MAC   then   CTR mode encryption  (802.11i)

• EAX:       CTR mode encryption  then  CMAC

All support AEAD:  (auth. enc. with associated data).       All are 
nonce-based. 

encrypted dataassociated data

authenticated

encrypted



An example API  (OpenSSL)

int AES_GCM_Init(AES_GCM_CTX *ain,

unsigned char *nonce,   unsigned long noncelen,

unsigned char *key,   unsigned int klen )

int AES_GCM_EncryptUpdate(AES_GCM_CTX *a,

unsigned char *aad,   unsigned long aadlen,

unsigned char *data,   unsigned long datalen,

unsigned char *out,   unsigned long *outlen)



The TLS Record Protocol  (TLS 1.2)

Unidirectional keys:      k
b⇾s 

  and   k
s⇾b               

Stateful encryption:

• Each side maintains two 64-bit counters:    ctr
b⇾s  

 ,  ctr
s⇾b

• Init. to 0 when session started.     ctr++ for every record.
• Purpose:    replay defense

k
b⇾s 

, 

k
s⇾b 

k
b⇾s 

, 

k
s⇾b 

TLS recordHDR



TLS record:  encryption   (CBC AES-128,   HMAC-SHA1)

k
b⇾s 

= (k
mac

 , k
enc

)

Browser side   enc(k
b⇾s  

, data, ctr
b⇾s 

) : 

step 1:     tag ⟵  S( k
mac

 ,   [  ++ctr
b⇾s 

 ll  header  ll  data]  )
step 2:     pad   [ header ll data ll tag ]   to AES block size

step 3:     CBC encrypt with k
enc 

and
 
new random IV

step 4:     prepend header

               data

type ll ver ll len

tag
pad



TLS record:  decryption (CBC AES-128,   HMAC-SHA1)

Server side   dec(k
b⇾s  

, record, ctr
b⇾s 

) : 

step 1:     CBC decrypt record using k
enc 

step 2:     check pad format:  send bad_record_mac if invalid

step 3:     check tag on    [ ++ctr
b⇾s 

 ll  header  ll  data] 

send bad_record_mac if invalid

Provides authenticated encryption

(provided no other info. is leaked during decryption)



Bugs in older versions  (prior to TLS 1.1)

IV for CBC is predictable:     (chained IV)

IV for next record is last ciphertext block of current record.

Not CPA secure.    (a practical exploit: BEAST attack)

Padding oracle:     during decryption

if pad is invalid send decryption failed alert

if mac is invalid send bad_record_mac alert

⇒   attacker learns info. about plaintext   (various attacks possible)

Lesson:   when decryption fails, do not explain why



Leaking the length
The TLS header leaks the length of TLS records

• Lengths can also be inferred by observing network traffic

For many web applications, leaking lengths reveals sensitive info:

• In tax preparation sites, lengths indicate the type of return being 
filed which leaks information about the user’s income

• In healthcare sites, lengths leaks what page the user is viewing

• In Google maps, lengths leaks the location being requested

No easy solution
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Asymmetric / Public 
Key Cryptography



Key management

Problem:     n users.   Storing mutual secret keys is difficult

Total:   O(n) keys per user



A better solution

Online Trusted 3rd Party  (TTP)

TTP



Generating keys: a toy protocol

Alice wants a shared key with Bob.     Eavesdropping security only.

Bob (k
B
) Alice (k

A
) TTP

ticket

k
AB 

k
AB 

“Alice wants key with Bob”

(E,D) a CPA-secure cipher

choose 

random k
AB

E(K
A
, "A, B" || K

AB
)

ticket = E(K
B
, "A, B" || K

AB
)



Generating keys: a toy protocol

Alice wants a shared key with Bob.     Eavesdropping security only.

Eavesdropper sees:    E(k
A
,    “A, B” ll k

AB
 )   ;     E(k

B
,    “A, B” ll k

AB
 )

(E,D) is CPA-secure  ⇒   
eavesdropper learns nothing about k

AB

Note:  TTP needed for every key exchange,   knows all session keys.

(basis of Kerberos system)



Toy protocol:  insecure against active attacks

Example:    insecure against replay attacks

Attacker records session between Alice and merchant Bob

– For example a book order

Attacker replays session to Bob

– Bob thinks Alice is ordering another copy of book



Key question
Can we generate shared keys without an online trusted 3rd party?

Answer:   yes!

Starting point of public-key cryptography:

• Merkle (1974),         Diffie-Hellman (1976),        RSA (1977)

• More recently:  ID-based enc. (BF 2001),   Functional enc. (BSW 2011)
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Merkle Puzzles



Key exchange without an online TTP?

BobAlice

Goal:    Alice and Bob want shared key, unknown to eavesdropper

• For now:    security against eavesdropping only   (no tampering)

eavesdropper ??

Can this be done using generic symmetric crypto?



Merkle Puzzles (1974)

Answer:   yes, but very inefficient

Main tool:    puzzles

• Problems that can be solved with some effort

• Example:      E(k,m)  a symmetric cipher with k ∈ {0,1}128

– puzzle(P)  =   E(P,  “message”)   where     P = 096 ll b
1
… b

32

– Goal:    find  P   by trying all   232   possibilities



Merkle puzzles
Alice:    prepare  232   puzzles

• For  i=1, …, 232  choose random  P
i 
∈{0,1}32

   
and   x

i
, k

i
 ∈

{0,1}128

set puzzle
i
   ⟵   E( 096 ll P

i 
,  “Puzzle # x

i
”  ll   k

i
  )

• Send   puzzle
1
 , … , puzzle

2^32
    to Bob

Bob:   choose a random   puzzle
j
   and solve it.   Obtain  ( x

j
, k

j 
)

 
.

• Send  x
j
  to Alice

Alice:    lookup puzzle with number x
j 
.     Use   k

j
  as shared secret



In a figure

Alice’s work:    O(n) (prepare  n  puzzles)

Bob’s work:   O(n)  (solve one puzzle)  

Eavesdropper’s work:     O( n2 )

BobAlice
puzzle

1
 , … , puzzle

n
 

x
j
 

k
j

k
j

(e.g.   264  time)



Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer:    unknown

But:  roughly speaking,

   quadratic gap is best possible if we treat cipher as 

   a black box oracle   [IR’89, BM’09]
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The
Diffie-Hellman (DH)

Protocol



Key exchange without an online TTP?

BobAlice

Goal:    Alice and Bob want shared secret, unknown to eavesdropper

• For now:    security against eavesdropping only   (no tampering)

eavesdropper ??

Can this be done with an exponential gap?



The Diffie-Hellman protocol  (informally)

Fix a large prime  p        (e.g.   600 digits)

Fix an integer    g   in   {1, …, p}

Alice Bob

choose random a in {1,…,p-1} choose random b in {1,…,p-1}

k
AB

 = gab  (mod p) =      (ga)b     =  Ab  (mod p)  Ba  
(mod p)   =    (gb)a  =

A = ga (mod p)

B = gb (mod p)



Security   (much more on this later)

Eavesdropper sees:      p, g,   A=ga (mod p),    and   B=gb (mod p) 

Can she compute       gab  (mod p)     ??

More generally:       define     DH
g
(ga, gb) = gab       (mod p)

How hard is the DH function mod p?



How hard is the DH function mod p?

Suppose prime  p  is  n  bits long. 

Best known algorithm (GNFS):        run time     exp(              )

cipher key size modulus size
   80 bits      1024 bits
  128 bits      3072 bits
  256 bits (AES) 15360 bits 

Elliptic Curve
size

160 bits

256 bits

512 bits

As a result:    slow transition away from (mod p) to elliptic curves



Elliptic curve
Diffie-Hellman



Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

A = ga (mod p)

B = gb (mod p)

A' = ga' (mod p)

B' = gb' (mod p)

Key = gab' (mod p) Key = ga'b (mod p)
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Public Key 
Cryptography



Establishing a shared secret

BobAlice

Goal:    Alice and Bob want shared secret, unknown to eavesdropper

• For now:    security against eavesdropping only   (no tampering)

eavesdropper ??

This segment:    a different approach



Public key encryption
Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• G():   randomized alg. outputs a key pair    (pk,  sk)

• E(pk, m):  randomized alg. that takes  m∈M and outputs c ∈C

• D(sk,c):   det.  alg. that takes  c∈C and outputs m∈M or ⊥

Consistency:    ∀(pk,  sk) output by G :    

∀m∈M:     D(sk,  E(pk, m) ) = m



Public key encryption

E D

Alice Bob

pk sk

m c c m

Bob:    generates    (PK, SK)    and gives  PK  to Alice 



Applications

Session setup    (for now, only eavesdropping security)

Non-interactive applications:  (e.g.  Email)

• Bob sends email to Alice encrypted using  pk
alice

• Note:   Bob needs  pk
alice

    (public key management)

Generate  (pk, sk)

Alice

choose random x
(e.g.  48 bytes) 

Bobpk

E(pk, x)
x



Trapdoor functions (TDF)
Def:   a trapdoor func.  X⟶Y  is a triple of efficient algs.   (G, F, F-1)

• G():   randomized alg. outputs a key pair    (pk,  sk)

• F(pk,⋅):   det. alg. that defines a function    X ⟶ Y

• F-1(sk,⋅):    defines a function    Y ⟶  X    that inverts   F(pk,⋅)

More precisely:    ∀(pk,  sk) output by G     

∀x∈X:     F-1(sk,  F(pk, x) ) = x



The RSA trapdoor permutation

First published:      Scientific American, Aug. 1977.

Very widely used:

– SSL/TLS:  certificates and key-exchange

– Secure e-mail and file systems

… many others



G(): choose random primes   p,q ≈1024 bits.      Set  N=pq. 

 choose integers   e , d   s.t.   e⋅d = 1   (mod ϕ(N) )  where ϕ(N) = (p - 1) (q - 1)

output    pk = (N, e)    ,     sk = (N, d)

F-1( sk, y) = yd ;      yd  =  RSA(x)d   =  xed  =  xkϕ(N)+1  =  (xϕ(N))k ⋅ x  =  
x

F( pk, x ):                   ;    RSA(x) = xe          (in  Z
N
)   

The RSA trapdoor permutation



RSA assumption:      RSA is  one-way permutation

For all efficient algs.  A:

Pr[  A(N,e,y) = y1/e  ] < negligible

where      p,q ← n-bit primes,     N←pq,     y←Z
N

*R R

The RSA Assumption



Review:  RSA pub-key encryption   (ISO std)

(E
s
, D

s
):   symmetric enc. scheme providing auth. encryption.

H:  Z
N
 → K   where  K is key space of (E

s
,D

s
)

• G():    generate RSA params:     pk = (N,e),    sk = (N,d)

• E(pk, m): (1) choose random x in Z
N

(2)  y ← RSA(x) = xe  ,   k ← H(x)

(3) output    (y ,  E
s
(k,m) ) 

• D(sk,  (y, c) ):    output  D
s
(  H(RSA-1 (y)) ,  c)



Textbook RSA is insecure

Textbook RSA encryption:

– public key:   (N,e) Encrypt:   c ⟵ me          (in  Z
N
)   

– secret key:   (N,d) Decrypt:   cd ⟶ m

Insecure cryptosystem !!  

– Is not semantically secure and many attacks exist

⇒     The RSA trapdoor permutation is not an encryption scheme !



Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!


