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Ανακοινώσεις / Διευκρινίσεις
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● Η εργασία #2 μόλις βγήκε - προθεσμία: 4 Ιουνίου, 23:59

● Γιατί είναι το όριο ασφαλείας του CTR mode qL2 << |X| ;

● Αναπλήρωση την Δευτέρα, 12/5, 11πμ-1μμ στην Α2



Την προηγούμενη φορά
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● Encryption Modes

○ Electronic Code Book (ECB)

○ Cipher Block Chaining (CBC)

○ Counter Mode (CTR)

● Mistakes and Attacks



Σήμερα
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● Message Integrity

○ Message Authentication Codes (MACs)

○ CBC-MAC, NMAC, CMAC

● Introduction to Hashing
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Security in the 
News



6



7

Block Cipher 
Attacks



Exhaustive Search for block cipher key

Goal:   given a few input output pairs  (m
i
, c

i
 = E(k, m

i
))   i=1,..,3

find key k.

Lemma:   Suppose DES is an ideal cipher  

( 256 random invertible functions)

     Then ∀ m, c   there is at most one key k s.t.    c = DES(k, m) 

Proof: 
with prob. ≥ 1 – 1/256 ≈ 99.5%



Exhaustive Search for block cipher key

For two DES pairs   (m
1
, c

1
=DES(k, m

1
)),   (m

2
, c

2
=DES(k, m

2
))

unicity prob. ≈  1 - 1/271

For AES-128:    given two inp/out pairs, unicity prob. ≈  1 - 1/2128

⇒  two input/output pairs are enough for exhaustive key search.



Strengthening DES against ex. search

Method 1:     Triple-DES

• Let  E : K × M ⟶ M  be a block cipher

• Define    3E: K3 × M ⟶ M    as

For 3DES:    key-size = 3×56 = 168 bits.             3×slower than DES. 

(simple attack in time   ≈2118 )  

3E( (k
1
,k

2
,k

3
), m) = E(k

1
, D(k

2
, E(k

3
, m)))  



Why not double DES?
• Define       2E( (k

1
,k

2
), m) =   E(k

1
 , E(k

2
 , m) )

Attack:    M = (m
1
,…, m

10
)  ,   C = (c

1
,…,c

10
).

• step 1:   build table.

sort on 2nd column

    key-len = 112 bits for DES

m E(k
2
,⋅) E(k

1
,⋅) c

k0 = 00…00
k1 = 00…01
k2 = 00…10

⋮
kN = 11…11

E(k0 , M)
E(k1 , M)
E(k2 , M)

⋮
E(kN , M)

256 
entries



Meet in the middle attack

Attack:    M = (m
1
,…, m

10
)  ,   C = (c

1
,…,c

10
)

• step 1:   build table.

• Step 2:   for all  k∈{0,1}56 do:

test if   D(k, C)  is in 2nd column.

    if so then    E(ki,M) = D(k,C)   ⇒   (ki,k) = (k
2
,k

1
)

m E(k
2
,⋅) E(k

1
,⋅) c

k0 = 00…00
k1 = 00…01
k2 = 00…10

⋮
kN = 11…11

E(k0 , M)
E(k1 , M)
E(k2 , M)

⋮
E(kN , M)



Meet in the middle attack

Time =  256log(256)  +  256log(256) < 263     <<   2112   ,      space ≈ 256 

Same attack on 3DES:      Time = 2118   ,      space ≈ 256 

m E(k
2
,⋅) E(k

1
,⋅) c

m E(k
2
,⋅) E(k

1
,⋅) cE(k

3
,⋅)



Method 2:   DESX
E : K × {0,1}n ⟶ {0,1}n  a block cipher

Define    EX   as       EX( (k
1
,k

2
,k

3
), m)   =   k

1
 ⨁ E(k

2
,  m⨁k

3 
) 

For DESX:    key-len = 64+56+64 = 184 bits

…  but easy attack in time   264+56 = 2120  

Note:    k
1
 ⨁ E(k

2
, m)    and    E(k

2
, m⨁k

1
)    does nothing  !!



Quantum attacks

Generic search problem:

Let   f: X ⟶ {0,1}  be a function.

Goal:    find  x∈X    s.t.   f(x)=1.

Classical computer:    best generic algorithm time  =  O( |X| )

Quantum computer [Grover ’96] :      time = O( |X|1/2 )

Can quantum computers be built:    unknown

https://en.wikipedia.org/wiki/Grover%27s_algorithm


Quantum exhaustive search
Given   m, c=E(k,m)    define

Grover   ⇒    quantum computer can find k in time   O( |K|1/2 )

DES:    time   ≈228      ,         AES-128:   time   ≈264 

      quantum computer   ⇒   256-bits key ciphers   (e.g.  AES-256)
 

1 if  E(k,m) = c

0    otherwise
f(k) = 



PRF Switching Lemma
Any secure PRP is also a secure PRF,   if |X| is sufficiently large.

Lemma:     Let   E   be a PRP over  (K,X) 

Then for any   q-query  adversary  A:

      | Adv
PRF

 [A,E]  −  Adv
PRP

[A,E] |   <   q2 / 2|X|

⇒  Suppose |X| is large so that    q2 / 2|X|     is “negligible” 

Then    Adv
PRP

 [A,E]  “negligible”   ⇒   Adv
PRF

[A,E] “negligible”
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Message Integrity



Message Integrity
Goal:      integrity,    no confidentiality.

Examples:

– Transaction data / ledger.

– Communications.

– Public binaries on disk.   

– Banner ads on web pages.



Message integrity:   MACs

Def:    MAC  I = (S,V)  defined over  (K,M,T) is a pair of algs:

– S(k,m) outputs t in T

– V(k,m,t) outputs `yes’ or `no’

Alice Bob

k k
message  m tag

Generate tag (Sign):
     tag ← S(k, m)

Verify tag:
    V(k, m, tag)  = `yes’

?



Integrity requires a secret key

• Attacker can easily modify message m and re-compute CRC.

• CRC designed to detect random, not malicious errors.

Alice Bob
message  m tag

Generate tag:
     tag ← CRC(m)

Verify tag:
    V(m, tag)  = `yes’?



Secure MACs
Attacker’s power:    chosen message attack

•     for m
1
,m

2
,…,m

q
   attacker is given   t

i
 ← S(k,m

i
)

Attacker’s goal:   existential forgery

•     produce some new valid message/tag pair  (m,t).

(m,t)  ∉  { (m
1
,t

1
) , … , (m

q
,t

q
) }

⇒   attacker cannot produce a valid tag for a new message

⇒   given  (m,t)   attacker cannot even produce (m,t’)  for   t’ ≠ t 



Secure MACs
• For a MAC   I=(S,V)  and adv.  A  define a MAC game as:

Def:  I=(S,V)  is a secure MAC if for all “efficient”  A:

         Adv
MAC

[A,I]  =  Pr[Chal. outputs 1]    is “negligible.”

Chal. Adv.
k←K

(m,t)

m
1
 ∈ M

t
1
 ←S(k,m

1
)

b=1    if  V(k,m,t) = `yes’   and  (m,t)  ∉  { (m
1
,t

1
) , … , (m

q
,t

q
) }

b=0   otherwise

b

m
2

, …, m
q

t
2

, …, t
q



Template
vertLeftWhite2

Let  I = (S,V) be a MAC.

Suppose an attacker is able to find  m
0
 ≠ m

1
 such that

S(k, m
0
) = S(k, m

1
)     for  ½ of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m
0
 or m

1

No, this MAC can be broken using a chosen msg attack

It depends on the details of the MAC



Template
vertLeftWhite2

Let  I = (S,V) be a MAC.

Suppose S(k,m) is 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message

It depends on the details of the MAC

No, an attacker can simply guess the tag for messages



Example:  protecting system files

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

– Then:   secure MAC   ⇒   all modified files will be detected

Suppose at install time the system computes:

F
1

t
1
 = S(k,F

1
)

F
2

t
2
 = S(k,F

2
)

F
n

t
n
 = S(k,F

n
)

⋯ k derived from
user’s password

filename filename filename
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Using PRFs to build 
MACs



Review:   Secure MACs
MAC:   signing alg.   S(k,m)⟶t   and verification alg.   V(k,m,t) ⟶0,1

Attacker’s power:    chosen message attack

•     for m
1
,m

2
,…,m

q
   attacker is given   t

i
 ← S(k,m

i
)

Attacker’s goal:   existential forgery

•     produce some new valid message/tag pair  (m,t).

(m,t)  ∉  { (m
1
,t

1
) , … , (m

q
,t

q
) }

⇒   attacker cannot produce a valid tag for a new message



Secure PRF   ⇒   Secure MAC
For a PRF   F: K × X  ⟶ Y   define a MAC    I

F
 = (S,V)    as:

– S(k,m)  :=  F(k,m)

– V(k,m,t):   output `yes’ if  t = F(k,m) and `no’ otherwise.

Alice Bob
message  m tag

tag ← F(k,m) accept msg if

       tag = F(k,m)



Template
vertLeftWhite2

A bad example

Suppose   F: K × X  ⟶ Y   is a secure PRF with   Y = {0,1}10

   Is the derived MAC   I
F
   a secure MAC system?

Yes, the MAC is secure because the PRF is secure 

No tags are too short:  anyone can guess the tag for any msg

It depends on the function   F



Security
Thm: If  F: K×X⟶Y  is a secure PRF  and  1/|Y| is negligible   

(i.e.  |Y| is large)   then  I
F
  is a secure MAC.

In particular,  for every eff. MAC adversary A attacking I
F

there exists an eff. PRF adversary B attacking F  s.t.:

Adv
MAC

[A, I
F
]  ≤  Adv

PRF
[B, F]   +  1/|Y|

⇒   I
F
  is secure as long as  |Y|  is large,   say  |Y| = 2128 .



Proof Sketch
Suppose   f: X  ⟶ Y    is a truly random function

Then MAC adversary A must win the following game:

A wins if    t = f(m)    and      m  ∉  { m
1
 , … , m

q
 }

⇒      Pr[A wins] = 1/|Y|

Chal. Adv.

f  in 
 Funs[X,Y] (m,t)

m
1
 ∈ 

Xt
1
 ← f(m

1
)

m
2

, …,   m
q

f(m
2
) , …, f(m

q
)

same must hold for  F(k,x)



Examples

• AES:   a MAC for 16-byte messages.

• Main question:    how to convert Small-MAC into a Big-MAC  ?

• Two main constructions used in practice:

– CBC-MAC   (banking – ANSI X9.9, X9.19,   FIPS 186-3)

– HMAC  (Internet protocols:  SSL, IPsec, SSH, …)

• Both convert a small-PRF into a big-PRF.



Truncating MACs based on PRFs

Easy lemma:    suppose   F: K × X  ⟶ {0,1}n   is a secure PRF.

Then so is    F
t
(k,m) = F(k,m)[1…t]      for all    1 ≤ t ≤ n

⇒  if  (S,V)  is a MAC is based on a secure PRF outputting n-bit tags

the truncated MAC outputting   w   bits is secure

     … as long as  1/2w  is still negligible   (say  w≥64)
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CBC-MAC and 
NMAC



MACs and PRFs

Recall:  secure PRF  F   ⇒   secure MAC,      as long as |Y| is large

S(k, m) =  F(k, m)

Our goal:   

given a PRF for short messages  (AES)

construct a PRF for long messages

From here on let   X = {0,1}n    (e.g.  n=128)



raw CBC

Construction 1:   encrypted CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

F(k
1
,

⋅)
tagLet   F: K × X ⟶ X   be a PRP 

Define new PRF   F
ECBC 

: K2 × X≤L ⟶ X 



cascade

Construction 2:   NMAC   (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let   F: K × X ⟶ K   be a PRF 

Define new PRF   F
NMAC 

: K2 × X≤L ⟶ K

> > > >k
t ll fpad

>
k

1

t



Template
vertLeftWhite2

Why the last encryption step in ECBC-MAC and NMAC?

NMAC:    suppose we define a MAC    I =  (S,V)     where

S(k,m) = cascade(k, m)

This MAC is secure 

This MAC can be forged without any chosen msg queries

This MAC can be forged with one chosen msg query

This MAC can be forged, but only with two msg queries



Why the last encryption step in ECBC-MAC?

Suppose we define a MAC    I
RAW

 =  (S,V)     where

S(k,m) = rawCBC(k,m)

Then   I
RAW

  is easily broken using a 1-chosen msg attack.

Adversary works as follows:

– Choose an arbitrary one-block message   m∈X

– Request tag for m.    Get   t = F(k,m)

– Output  t  as MAC forgery for the 2-block message  (m,  t⊕m)

Indeed:    rawCBC(k, (m,  t⊕m) ) = F(k, F(k,m)⊕(t⊕m) ) = F(k, t⊕(t⊕m) ) = t



ECBC-MAC and NMAC analysis

Theorem:     For any L>0,

For every eff. q-query PRF adv. A attacking F
ECBC 

or F
NMAC

there exists an eff. adversary B  s.t.:

   Adv
PRF

[A, F
ECBC

] ≤  Adv
PRP

[B, F]  +  2 q2 / |X|

Adv
PRF

[A, F
NMAC

] ≤  q⋅L⋅Adv
PRF

[B, F]  +  q2 / 2|K|

CBC-MAC is secure as long as   q  <<  |X|1/2

NMAC is secure as long as   q  <<  |K|1/2               (264 for AES-128)



An example

q = # messages MAC-ed with k    

Suppose we want   Adv
PRF

[A, F
ECBC

] ≤  1/232          ⇐    q2 /|X| < 1/ 232 

• AES:     |X| = 2128    ⇒   q < 248

So, after  248  messages must, must change key

• 3DES:    |X| = 264    ⇒   q < 216

Adv
PRF

[A, F
ECBC

] ≤  Adv
PRP

[B, F]  +  2 q2 / |X|



The security bounds are tight:  an attack

After signing |X|1/2  messages with ECBC-MAC  or  

|K|1/2  messages with NMAC

the MACs become insecure

Suppose the underlying PRF  F  is a PRP   (e.g. AES)

• Then both PRFs (ECBC and NMAC) have the following 
extension property:

          ∀x,y,w:   F
BIG

(k, x) = F
BIG

(k, y)     ⇒    F
BIG

(k,  xllw) = F
BIG

(k, yllw)



The security bounds are tight:  an attack
Let  F

BIG
: K × X ⟶ Y   be a PRF that has the extension property

F
BIG

(k, x) = F
BIG

(k, y)     ⇒    F
BIG

(k,  xllw) = F
BIG

(k, yllw)

Generic attack on the derived MAC:

step 1:   issue  |Y|1/2  message queries for rand. messages in X.

obtain   ( m
i
, t

i
 )      for  i = 1 ,…, |Y|1/2  

step 2:   find a collision   t
u
 = t

v
   for u≠v   (one exists w.h.p by b-day paradox)

step 3:   choose some w and query for   t := F
BIG

(k, m
u
llw)

step 4:   output forgery  (m
v
llw,  t).     Indeed    t := F

BIG
(k, m

v
llw)



Better security:   a rand. construction

Let   F: K × X ⟶ X   be a PRF.      Result:  MAC with tags in X2.

Security:          Adv
MAC

[A, I
RCBC

] ≤  Adv
PRP

[B, F] ⋅ (1 +  2 q2 / |X| )

⇒   For 3DES:    can sign  q=232  msgs with one key

m

rawCBC>k t

rrand. r in X 

rawCBC
>

tag

2 blocks

k
1



Comparison

ECBC-MAC is commonly used as an AES-based MAC

• CCM encryption mode  (used in 802.11i)

• NIST standard called CMAC

NMAC not usually used with AES or 3DES

• Main reason:    need to change AES key on every block

requires re-computing AES key expansion

• But NMAC is the basis for a popular MAC called HMAC (next)



What about padding?



What if msg. len. is not multiple of block-size? 

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] ???

⊕⊕

F(k,⋅)

⊕

F(k
1
,

⋅)
tag

m[4]



Template
vertLeftWhite2

CBC MAC padding

Yes, the MAC is secure

No, given tag on msg  m  attacker obtains tag on mll0 
It depends on the underlying MAC

m[0] m[1] m[0] 0000m[1]

Bad idea:   pad  m  with  0’s

Is the resulting MAC secure?

Problem:    pad(m) = pad(mll0)



CBC MAC padding
For security, padding must be invertible !    

len(m
0
)≠ len(m

1
)    ⇒     pad(m

0
) ≠ pad(m

1
)

ISO:   pad with   “1000…00”.    Add new dummy block if needed.

– The “1” indicates beginning of pad.

m[0] m[1] m[0] 100m[1]

m’[0] m’[1] m’[0] m’[1] 1000…000



CMAC   (NIST standard)

Variant of CBC-MAC where      key = (k, k
1
, k

2
)

• No final encryption step   (extension attack thwarted by last keyed xor)

• No dummy block   (ambiguity resolved by use of k
1
 or k

2
)

F(k,⋅) F(k,⋅)

m[0]

⊕

m[1] m[w]

F(k,⋅)

⊕

⋯

tag

100

k
1

F(k,⋅) F(k,⋅)

m[0]

⊕

m[1] m[w]

F(k,⋅)

⊕

⋯

tag

k
2



More MACs - More Fun!

● PMAC - parallel MAC computation!
● One-time MAC / Many-time MAC
● Carter-Wegman MAC
● … and many more

but we still didn't talk about the extremely common HMAC (Hash 
MAC)

52
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Hashes and 
Resistance



Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps an 
arbitrary binary string to a string of n bits. H : {0, 1}* -> {0,1}n

● Message space much larger than output space
H: M -> T, |M| >> |T|

● Given the output, we want the input to remain secret and also 
make it hard for other inputs to get the same output (collision).

● Applications: everywhere (from storing passwords to 
commitment protocols)

54



Hash Function Properties

Let H: M -> T, |M| >> |T|

● Pre-image resistance. H is pre-image resistant if given a hash 
value h, it should be difficult to find any message m such that 
H(m) = h. In other words, P[H(random m) = h] = 1/|T|.

● Second pre-image resistance (weak collision resistance). H is 
second-preimage resistant if given a message m

1
, it should be 

difficult to find a different m
2
 such that H(m

1
) = H(m

2
).

● (Strong) Collision resistance. H is collision resistant if it is 
difficult to find any two different messages m

1
 and m

2
 such 

that H(m
1
) = H(m

2
).

55



Collision Resistance =>
Second-preimage Resistance

56



Second-preimage Resistance =>
Preimage Resistance?

57

*only true under certain conditions ( |M| >> |T| )



Collision Resistance Definition

Let  H: M →T  be a hash function       (  |M| >> |T|  )

A collision for H is a pair  m
0
 , m

1
 ∈ M  such that:

H(m
0
)  =  H(m

1
)    and    m

0
 ≠ m

1

A function H is collision resistant if for all (explicit) “eff” algs. A:

    Adv
CR

[A,H]  =  Pr[A outputs collision for H]

is “neg”.

Example:   SHA-256  (outputs 256 bits)



Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!


