AlGAecn #16 - Integrity

FOUNDATIONS

EOvIKS kal KatrodioTplako lNavetmiotripio ABnvwy
SOFTWARE

Eicaywyr) otnv Ao@aAsia

@avdaonc Auyepivog

SYSTEMS CRYPTO

THE GREAT THING ABOUT | | HARD DRIVES FAIL, FiLt) DEGRADES, PANT | |-
DIGITAL DATA ISTHAT | | OF COURSE, BUT THER | | CRACKS, BUT A COPY OF A

IT NEVER DEGRADES. BITS (AN BE (OPIED CENTURY-OLD DATR FILE. 1S
FOREVER WITHOUT LS. | | IDENTICAL O THE ORIGINAL.

IR

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (lots of slides from Dan

Boneh @ Stanford!)

HUMANS

https://users.ece.cmu.edu/~dbrumley/

AVOKOIVWOEIC / AIEUKPIVIOEIC

e H epyaoia #2 poAic Bynke - Trpobeouia: 4 louviou, 23:59
e [arTi eival 1o 6pio acpaAeiac Tou CTR mode gL? << |X]| ;

e AvamAipwon tnv Agutépa, 12/5, 11Tu-1up otnv A2

Tnv TTponNyouuevn popa

e Encryption Modes
o Electronic Code Book (ECB)
o Cipher Block Chaining (CBC)
o Counter Mode (CTR)

e Mistakes and Attacks

2 NUEPQ

o Message Integrity
o Message Authentication Codes (MACs)
o CBC-MAC, NMAC, CMAC

e Introduction to Hashing

Security in the

News

Cisco Patches CVE-2025-20188 (10.0 CVSS) in 10S XE That Enables Root
Exploits via JWT

£ May 08,2025 & Ravie Lakshmanan Vulnerability / Network Security

Cisco has released software fixes to address a maximume-severity security flaw in its IOS XE Wireless

Controller that could enable an unauthenticated, remote attacker to upload arbitrary files to a

susceptible system.
The vulnerability, tracked as CVE-2025-20188, has been rated 10.0 on the CVSS scoring system.

"This vulnerability is due to the presence of a hard-coded JSON Web Token (JWT) on an affected

system,' the company said in a Wednesday advisory.

"An attacker could exploit this vulnerability by sending crafted HTTPS requests to the AP image

download interface. A successful exploit could allow the attacker to upload files, perform path

traversal, and execute arbitrary commands with root privileges.”

Block Cipher

Attacks

Exhaustive Search for block cipher key

Goal: given a few input output pairs (mi, c. = E(k, mi)) i=1,..,3
find key k.

Lemma: Suppose DES is an ideal cipher
(2°° random invertible functions)
Then ¥ m, c thereis at most one key ks.t. ¢ =DES(k, m)

Proof: Ppr #k:c=DES(k,m) = DES(K,m)] <
" PIDES(k,m) = DES(K,m)] < 2% - = == with prob. = 1—1/256 = 99.5%

64
k'e{0,1}5 ‘

Exhaustive Search for block cipher key

For two DES pairs (ml, c,=DES(k, ml)), (mz, c,=DES(k, mz))
unicity prob. = 1-1/2"%

For AES-128: given two inp/out pairs, unicity prob. = 1 -1/2%%®

= two input/output pairs are enough for exhaustive key search.

Strengthening DES against ex. search

Method 1: Triple-DES
e Let E: KxM— M be a block cipher

e Define 3E:K3xM—M as
3E((k,,k,k;), m) = E(k,, D(k,, E(k,, m)))

For 3DES: key-size = 3x56 = 168 bits. 3xslower than DES.

(simple attack in time =2!1%)

Why not double DES?

* Define 2E((k,,k), m) = E(k1 , E(k, , m))
key-len = 112 bits for DES

Il —cc) — ek,) — B

Attack: M = (ml,..., m1o) , C= (C1""'C1o)'
. o K©=00...00 E(M) | |
step 1: build table. e .
2 _ 2 -
sort on an column k®= O?...].O E(k ! M) entries
N=11..11 E(k",Mm) |

Meet in the middle attack

Bl ek,) — Ek,

)

Attack: M=(m_,..., m C=(c,,.

ne

 step 1: build table.

* Step 2: forall k€{0,1}° do:
test if D(k, C) isin 2" column.

if sothen E(k',M)=D(k,C) = (k' k)=

k°=00...00 E(K°, M)
k!=00...01 E(k', M)
k? = oo...1o E(k?, M)
kN-11...11 E(kN, M)
kl)

(k.

Meet in the middle attack

B ek,) — Elk,) ——

Time = 2°%log(2°%) + 2°%log(2°%) < 2% << 212 = space=2°°

2118

Same attack on 3DES: Time = , space=2°

K

E(k,,-) — E(k,,-) — E(k,,")

Method 2: DESX

E:Kx{0,1}"— {0,1}" a block cipher

Define EX as EX((k, k. ,k,), m) = k, @ E(k,, m®Dk,)
For DESX: key-len = 64+56+64 = 184 bits

... but easy attack in time 2°%"° =219

Note: k, @ E(k, m) and E(k, m®k,) doesnothing !

Quantum attacks

Generic search problem:
Let f: X—{0,1} be a function.
Goal: find x€X s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X])

Quantum computer [Grover’96] : time = O(|X|Y?)

Can quantum computers be built: unknown

https://en.wikipedia.org/wiki/Grover%27s_algorithm

Quantum exhaustive search

Given m, c=E(k,m) define 1 if E(k,m)=-c
f(k) = -

0 otherwise

==

Grover = guantum computer can find k in time O(|K]|%?)

DES: time =2%% AES-128: time =2%

quantum computer = 256-bits key ciphers (e.g. AES-256)

PRF Switching Lemma

Any secure PRP is also a secure PRF, if |X]| is sufficiently large.

Lemma: Let E be a PRPover (K,X)
Then for any qg-query adversary A:

| Adv___[AE] = Adv. [AE]l] < g®/2]X]

PRF PRP

= Suppose |X] islarge sothat qg%/2|X| is “negligible”

Then Adv___[AE] “negligible” = Adv

PRP

IAE] “negligible”

PRF

Message Integrity

Message Integrity

Goal: integrity, no confidentiality.

Examples:
— Transaction data / ledger.
— Communications.
— Public binaries on disk.

— Banner ads on web pages.

HOW To LSE PGP 10 VERIFY
THAT AN EMAIL 1S AUTHENTIC:

LOOK FOR THIS
TEXT AT THE TOP

PLINAY | S 1T)

@ Hefins gl @
.

A o pon a

(==~ BEGIN PGP SIGNED MESSAGE:——)
HASH: SHAZ256

HEY

0T A ad . TUlOs W ND THRLIAG NADE N
e

IF IT5 THERE, THE EMAIL 15 PROBABLY FINE.

Message integrity: MACs

k- T mesagem g ﬁ

Generate tag (Sign): Verify tag: ,
tag < S(k, m) V(k, m, tag) = yes’

Def: MAC | =(S,V) defined over (K,M,T) is a pair of algs:

— S(k,m) outputs tinT
— V(k,m,t) outputs ‘yes' or 'no’

Integrity requires a secret key

Generate tag: Verify tag: .
tag «— CRC(m) V(m, tag) = ‘yes’

e Attacker can easily modify message m and re-compute CRC.

* CRC designed to detect random, not malicious errors.

Secure MACs

Attacker’s power: chosen message attack
e for m,m,,...,m attacker is given t — S(k,mi)

Attacker’s goal: existential forgery

 produce some new valid message/tag pair (m,t).
(mt) & {(myt), ..., (mt)}

= attacker cannot produce a valid tag for a new message

= given (m,t) attacker cannot even produce (m,t’) for t' #t

Secure MACs

e ForaMAC I=(S,V) and adv. A define a MAC game as:

m € M m., ,...,m
t, «<S(k,m,) t, ...t

(m,t)

!
b=1 if V(k,mt)="yes’” and (mt) & {(m,t), ..., (m_ t)}
b=0 otherwise

Def: 1=(S,V) is a secure MAC if for all “efficient” A:
Adv . [Al] = Pr[Chal. outputs 1] s “negligible.”

Let | =(S,V) be a MAC.
Suppose an attacker is able to find m_ 7 m_ such that

S(k, m) =S(k, m,) for 7% of the keys kin K
Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m or m,

No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC

O O O O

Let | =(S,V) be a MAC.
Suppose S(k,m) is 5 bits long

Can this MAC be secure?

O No, an attacker can simply guess the tag for messages

O It depends on the details of the MAC

O Yes, the attacker cannot generate a valid tag for any message
O

Example: protecting system files

Suppose at install time the system computes:
F F coo F k derived from
1 2 . user’s password

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password
— Then: secure MAC = all modified files will be detected

Using PRFs to build

MACs

Review: Secure MACs

MAC: signing alg. S(k,m)—t and verification alg. V(k,m,t) —0,1

Attacker’s power: chosen message attack
e for m,m,,...,m attacker is given t — S(k,mi)

Attacker’s goal: existential forgery
 produce some new valid message/tag pair (m,t).

(mt) & {(m,t), ..., (m,t)}

= attacker cannot produce a valid tag for a new message

Secure PRF = Secure MAC

Fora PRF F:KxX —Y defineaMAC | =(S,V) as:

— S(k,m) := F(k,m)

— V(k,m,t): output 'yes if t=F(k,m)and ‘no’ otherwise.

tag

tag — F(k,m)

Bob

accept msg if

tag = F(k,m)

A bad example
Suppose F:KxX — Y isasecure PRFwith Y ={0,1}*°

Is the derived MAC | a secure MAC system?

O Yes, the MAC is secure because the PRF is secure
No tags are too short: anyone can guess the tag for any msg

It depends on the function F

O O O

Security

Thm: If F: KxX—Y is a secure PRF and 1/]|Y]| is negligible

(i.,e. |Y|islarge) then | is a secure MAC.

In particular, for every eff. MAC adversary A attacking |_

there exists an eff. PRF adversary B attacking F s.t.:

[A, 1] < Adv,[B,F] + 1/]Y]

MAC PRF

= |_issecureaslongas |Y| islarge, say |Y|=2".

Proof Sketch

Suppose f: X —Y isa truly random function

Then MAC adversary A must win the following game:

Funs[X,y] | (m,t)

A winsif t=f(m) and mGE{ml,...,mq}

= Pr[Awins]=1/|Y]|
same must hold for F(k,x)

Examples

AES: a MAC for 16-byte messages.

Main question: how to convert Small-MAC into a Big-MAC ?

Two main constructions used in practice:
— CBC-MAC (banking — ANSI X9.9, X9.19, FIPS 186-3)
— HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.

Truncating MACs based on PRFs

Easy lemma: suppose F:KxX — {0,1}" is a secure PRF.
Thensois F(k,m)=F(km)[1l...t] forall 1=st=n

= if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
the truncated MAC outputting w bits is secure

... as longas 1/2% is still negligible (say w=64)

CBC-MAC and

NMAC

MACs and PRFs

Recall: secure PRF F = secure MAC, aslongas |Y]| islarge
S(k, m) = F(k, m)

Our goal:
given a PRF for short messages (AES)
construct a PRF for long messages

From hereon let X={0,1}" (e.g. n=128)

Construction 1: encrypted CBC-MAC

raw CBC

m|[0]

A A

let F:KxX—X beaPRP

tag

: . w2 <L
Define new PRF Fooncs Kex X=-— X

Construction 2: NMAC (rested mac)

cascade

m[O] m[1] m[3] m[4]

let F: KxX— K be aPRF
Define new PRF F K2 x X3t — K

NMAC *

Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we definea MAC 1= (S,V) where

S(k,m) = cascade(k, m)

O This MAC is secure

O This MAC can
O This MAC can
O This MAC can

oe forgeco

oe forgeco

oe forgeco

without any chosen msg queries
with one chosen msg query

, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we definea MAC | = (SV) where
S(k,m) = rawCBC(k,m)

Then | is easily broken using a 1-chosen msg attack.

Adversary works as follows:
— Choose an arbitrary one-block message me&X
— Request tag form. Get t=F(k,m)
— Output t as MAC forgery for the 2-block message (m, t®m)

Indeed: rawCBC(k, (m, t®m)) = F(k, F(k,m)®(t®m)) = F(k, t&(t®m)) = t

ECBC-MAC and NMAC analysis

Theorem: For any L>0,

For every eff. g-query PRF adv. A attacking F__,.or F .

there exists an eff. adversary B s.t.:

[A,F__]< Adv__[B,F] + 29%/ |X]

PRF ECBC

[A, F

PRP

]< gq-L'Adv__[B, F] + g%/ 2]|K]|

PRF NMAC PRF

CBC-MAC is secure as longas g << |X|Y?

NMAC is secure as long as q << |K|? (254 for AES-128)

An example
1< Adv, [B, F] + 22/ |X] J

{ Adv

PRF[ECBC

g = # messages MAC-ed with k

Suppose we want Adv] < 1/232 & g% /|X]| <1/ 2%

PRF[A' I:ECBC
e AES: |X|=2'® = g<2%

248

So, after messages must, must change key

e 3DES: |X|=2% = qg<2%

The security bounds are tight: an attack

After signing |X|Y? messages with ECBC-MAC or
|K|Y? messages with NMAC
the MACs become insecure

Suppose the underlying PRF F is a PRP (e.g. AES)

 Then both PRFs (EcBc and NMAC) have the following
extension property:

VXIyIW: FBIG(k’ X) = FBIG(k’ y) = FB|G(k’ XIIW) = I:BIG

(k, yllw)

The security bounds are tight: an attack
Let F, :KxX—Y be a PRFthat has the extension property

BIG(k X)=F,(ky) = F, (k xllw)=F__(k yllw)
Generic attack on the derived MAC:

step 1: issue |Y|¥? message queries for rand. messages in X.
obtain (m,t) fori=1,.., Y[
step 2: find a collision t =t for u#Zv (one exists w.h.p by b-day paradox)

step 3: choose some w and query for t:=F_ (k, mullw)

BIG

step 4: output forgery (m llw, t). Indeed t:=F_ (k, mvllw)

Better security: a rand. construction

2 blocks

k1
!

m
-

rand. rin X

Llet F: KxX— X beaPRF. Result: MAC with tags in X°.

Security: Adv_[A] < Adv

MAC [B,F] - (1+ 2q*/ |X])

’IRCBC PRP

= For 3DES: can sign =232 msgs with one key

>

:

=

gel

Comparison

ECBC-MAC is commonly used as an AES-based MAC
e CCM encryption mode (used in 802.11i)
* NIST standard called CMAC

NMAC not usually used with AES or 3DES
* Main reason: need to change AES key on every block

requires re-computing AES key expansion
 But NMAC is the basis for a popular MAC called HMAC (next)

What about padding?

What if msg. len. is not multiple of block-size?

m|[0] ml1]

|

@

w

CBC MAC padding

Bad idea: pad m with O’s

m[0] M[1] | — m[0] m[1] | 0000]

Is the resulting MAC secure?

O Yes, the MAC is secure

O It depends on the underlying MAC

O No, given tag on msg m attacker obtains tag on mll0
O

Problem: pad(m) = pad(mllO)

CBC MAC padding

For security, padding must be invertible |

len(m)#len(m,) = pad(m) # pad(m.)

ISO: pad with “1000...00". Add new dummy block if needed.

— The "17 indicates beginning of pad.

m[0] m([1] — m|[0] m[1] -

m’[0] m’[1] m’[0] m’[1] | 1000...000

l

CMAC (NIST standard)

Variant of CBC-MAC where key = (k, k., k)
* No final encryption step (extension attack thwarted by last keyed xor)
* No dummy block (ambiguity resolved by use of k. or k)

m[O] m[1] | |m[w][200] m[O0] m[1]

1
| |
4 =

|

More MACs - More Fun!

e PMAC - parallel MAC computation!
e One-time MAC / Many-time MAC
e Carter-Wegman MAC

e ... and many more

but we still didn't talk about the extremely common HMAC (Hash
MAC

52

Hashes and

Resistance

53

Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps an
arbitrary binary string to a string of n bits. H : {0, 1} ->{0,1}"

e Message space much larger than output space
H:M->T, [M]| >> |T|

e Given the output, we want the input to remain secret and also
make it hard for other inputs to get the same output (collision).

o Applications: everywhere (from storing passwords to
commitment protocols)

54

Hash Function Properties

Let H: M ->T, [M]| >> |T|

e Pre-image resistance. H is pre-image resistant if given a hash
value h, it should be difficult to find any message m such that
H(m) = h. In other words, P[H(random m) = h] = 1/|T]|.

e Second pre-image resistance (weak collision resistance). H is
second-preimage resistant if given a message m,, it should be
difficult to find a different m_ such that H(ml) = H(mz).

e (Strong) Collision resistance. H is collision resistant if it is
difficult to find any two different messages m, and m, such
that H(m_) = H(m,).

55

Collision Resistance =>
Second-preimage Resistance

56

Second-preimage Resistance =>
Preimage Resistance?

*only true under certain conditions ([M]| >> |T|)

57

Collision Resistance Definition

Let H: M —T be a hash function ([M]>>]|T]|)

A collision for His a pair m , m, € M such that:
H(m,) = H(m_) and m #m,

A function H is collision resistant if for all (explicit) “eff” algs. A:
Adv_[A,H] = Pr[A outputs collision for H]

is “‘neg’.

Example: SHA-256 (outputs 256 bits)

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

