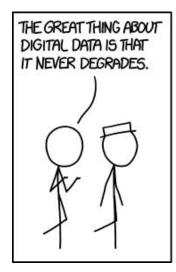
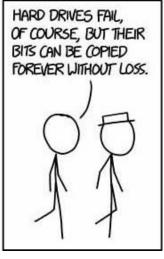
Διάλεξη #16 - Integrity

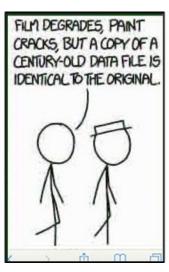
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Εισαγωγή στην Ασφάλεια

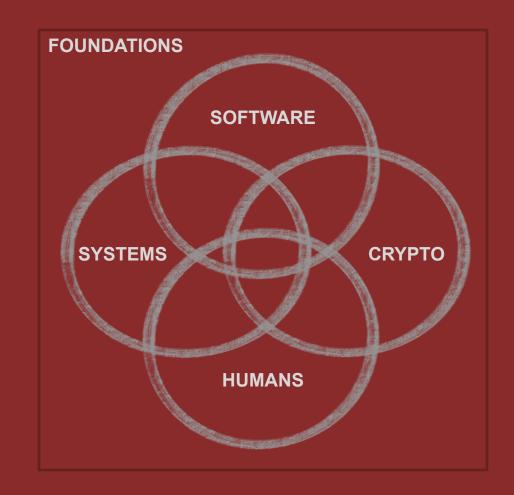
Θανάσης Αυγερινός







Huge thank you to <u>David Brumley</u> from Carnegie Mellon University for the guidance and content input while developing this class (lots of slides from Dan Boneh @ Stanford!)

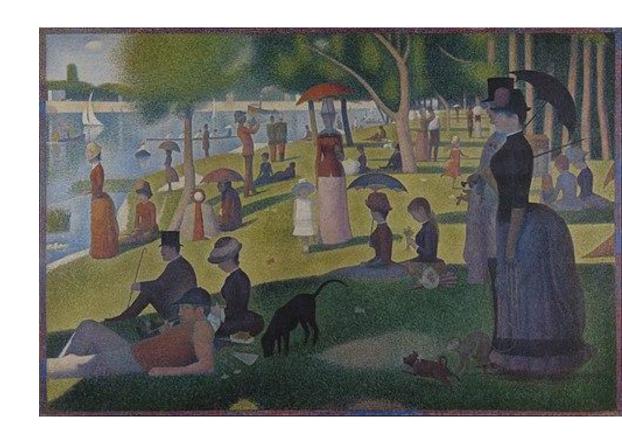


Ανακοινώσεις / Διευκρινίσεις

- Η εργασία #2 μόλις βγήκε προθεσμία: 4 Ιουνίου, 23:59
- Γιατί είναι το όριο ασφαλείας του CTR mode qL² << |X|;
- Αναπλήρωση την Δευτέρα, 12/5, 11πμ-1μμ στην Α2

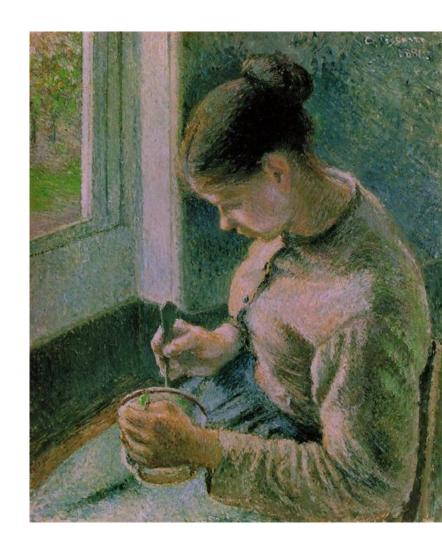
Την προηγούμενη φορά

- Encryption Modes
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Counter Mode (CTR)
- Mistakes and Attacks



Σήμερα

- Message Integrity
 - Message Authentication Codes (MACs)
 - O CBC-MAC, NMAC, CMAC
- Introduction to Hashing



Cisco Patches CVE-2025-20188 (10.0 CVSS) in IOS XE That Enables Root **Exploits via JWT**

May 08, 2025 Ravie Lakshmanan

Vulnerability / Network Security

Cisco has released software fixes to address a maximum-severity security flaw in its IOS XE Wireless Controller that could enable an unauthenticated, remote attacker to upload arbitrary files to a susceptible system.

The vulnerability, tracked as CVE-2025-20188, has been rated 10.0 on the CVSS scoring system.

"This vulnerability is due to the presence of a hard-coded JSON Web Token (JWT) on an affected system," the company said in a Wednesday advisory.

"An attacker could exploit this vulnerability by sending crafted HTTPS requests to the AP image download interface. A successful exploit could allow the attacker to upload files, perform path traversal, and execute arbitrary commands with root privileges."



Exhaustive Search for block cipher key

Goal: given a few input output pairs $(m_i, c_i = E(k, m_i))$ i=1,...,3 find key k.

Lemma: Suppose DES is an *ideal cipher*

(2⁵⁶ random invertible functions)

Then \forall m, c there is at most <u>one</u> key k s.t. c = DES(k, m)

Proof:
$$P[\exists k' \neq k : c = DES(k, m) = DES(k', m)] \leq \sum_{k' \in \{0,1\}^{56}} P[DES(k, m) = DES(k', m)] \leq 2^{56} \cdot \frac{1}{2^{64}} = \frac{1}{2^8}$$
 with prob. $\geq 1 - 1/256 \approx 99.5\%$

Exhaustive Search for block cipher key

For two DES pairs $(m_1, c_1 = DES(k, m_1))$, $(m_2, c_2 = DES(k, m_2))$ unicity prob. $\approx 1 - 1/2^{71}$

For AES-128: given two inp/out pairs, unicity prob. $\approx 1 - 1/2^{128}$

⇒ two input/output pairs are enough for exhaustive key search.

Strengthening DES against ex. search

Method 1: Triple-DES

- Let $E: K \times M \longrightarrow M$ be a block cipher
- Define **3E**: $K^3 \times M \longrightarrow M$ as

3E(
$$(k_1,k_2,k_3)$$
, m) = E(k_1 , D(k_2 , E(k_3 , m)))

For 3DES: key-size = $3 \times 56 = 168$ bits. $3 \times slower$ than DES.

(simple attack in time $\approx 2^{118}$)

Why not double DES?

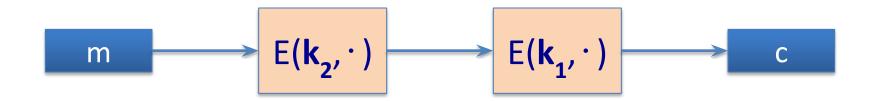
• Define $2E((k_1,k_2), m) = E(k_1, E(k_2, m))$

key-len = 112 bits for DES

Attack: $M = (m_1, ..., m_{10})$, $C = (c_1, ..., c_{10})$.

step 1: build table.
 sort on 2nd column

Meet in the middle attack



Attack: $M = (m_1, ..., m_{10})$, $C = (c_1, ..., c_{10})$

• step 1: build table.

$k^0 = 0000$	E(k ⁰ , M)
$k^1 = 0001$	E(k ¹ , M)
$k^2 = 0010$	$E(k^2, M)$
:	:
$k^{N} = 1111$	E(k ^N , M)

• Step 2: for all $k \in \{0,1\}^{56}$ do: test if D(k, C) is in 2^{nd} column.

if so then
$$E(k^i,M) = D(k,C) \Rightarrow (k^i,k) = (k_2,k_1)$$

Meet in the middle attack

$$E(\mathbf{k_2}, \cdot) \longrightarrow E(\mathbf{k_1}, \cdot) \longrightarrow c$$

Time =
$$2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) < 2^{63} << 2^{112}$$
, space $\approx 2^{56}$

Same attack on 3DES: Time = 2^{118} , space $\approx 2^{56}$

$$E(\mathbf{k}_{3},\cdot) \longrightarrow E(\mathbf{k}_{2},\cdot) \longrightarrow E(\mathbf{k}_{1},\cdot) \longrightarrow c$$

Method 2: DESX

 $E: K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a block cipher

Define EX as
$$EX((k_1,k_2,k_3), m) = k_1 \oplus E(k_2, m \oplus k_3)$$

For DESX: key-len = 64+56+64 = 184 bits

... but easy attack in time $2^{64+56} = 2^{120}$

Note: $k_1 \oplus E(k_2, m)$ and $E(k_2, m \oplus k_1)$ does nothing !!

Quantum attacks

Generic search problem:

Let $f: X \longrightarrow \{0,1\}$ be a function.

Goal: find $x \in X$ s.t. f(x)=1.

Classical computer: best generic algorithm time = O(|X|)

Quantum computer [Grover'96]: time = O($|X|^{1/2}$)

Can quantum computers be built: unknown

Quantum exhaustive search

Given m, c=E(k,m) define

$$f(k) = \begin{cases} 1 & \text{if } E(k,m) = c \\ 0 & \text{otherwise} \end{cases}$$

Grover \Rightarrow quantum computer can find k in time $O(|K|^{1/2})$

DES: time $\approx 2^{28}$, AES-128: time $\approx 2^{64}$

quantum computer \Rightarrow 256-bits key ciphers (e.g. AES-256)

PRF Switching Lemma

Any secure PRP is also a secure PRF, if |X| is sufficiently large.

<u>Lemma</u>: Let E be a PRP over (K,X)

Then for any q-query adversary A:

$$| Adv_{PRF} [A,E] - Adv_{PRP} [A,E] | < q^2/2|X|$$

 \Rightarrow Suppose |X| is large so that $q^2/2|X|$ is "negligible"

Then $Adv_{PRP}[A,E]$ "negligible" $\Rightarrow Adv_{PRF}[A,E]$ "negligible"

Message Integrity

Goal: **integrity**, no confidentiality.

Examples:

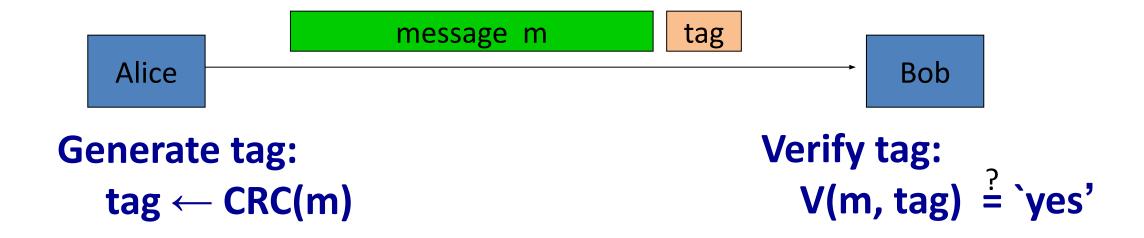
- Transaction data / ledger.
- Communications.
- Public binaries on disk.
- Banner ads on web pages.

Message integrity: MACs

Def: **MAC** I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs `yes' or `no'

Integrity requires a secret key



Attacker can easily modify message m and re-compute CRC.

CRC designed to detect <u>random</u>, not malicious errors.

Secure MACs

Attacker's power: **chosen message attack**

• for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery

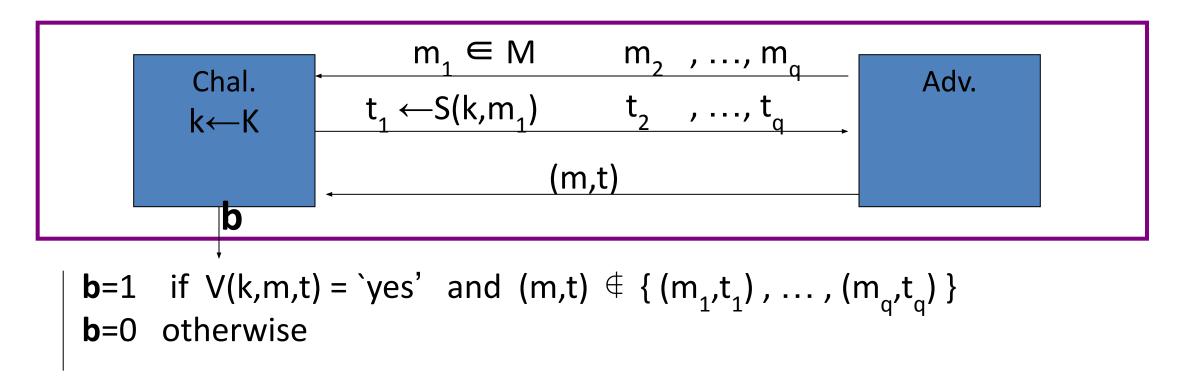
• produce some **new** valid message/tag pair (m,t).

$$(m,t) \in \{ (m_1,t_1), \dots, (m_q,t_q) \}$$

- ⇒ attacker cannot produce a valid tag for a new message
- \Rightarrow given (m,t) attacker cannot even produce (m,t') for t' \neq t

Secure MACs

For a MAC I=(S,V) and adv. A define a MAC game as:



Def: I=(S,V) is a **secure MAC** if for all "efficient" A:

 $Adv_{MAC}[A,I] = Pr[Chal. outputs 1]$ is "negligible."

Let I = (S,V) be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that $S(k, m_0) = S(k, m_1)$ for ½ of the keys k in K

Can this MAC be secure?

- Yes, the attacker cannot generate a valid tag for m₀ or m₁
- No, this MAC can be broken using a chosen msg attack
- It depends on the details of the MAC

Let I = (S,V) be a MAC.

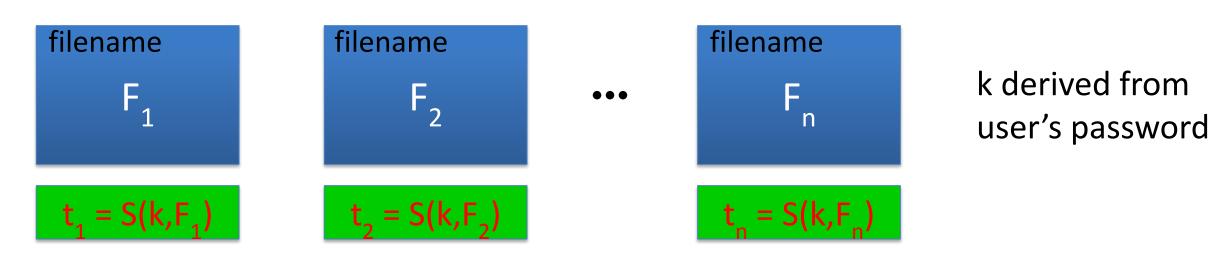
Suppose S(k,m) is 5 bits long

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
- It depends on the details of the MAC
- Yes, the attacker cannot generate a valid tag for any message

Example: protecting system files

Suppose at install time the system computes:



Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

Then: secure MAC ⇒ all modified files will be detected

Review: Secure MACs

MAC: signing alg. $S(k,m) \rightarrow t$ and verification alg. $V(k,m,t) \rightarrow 0,1$

Attacker's power: chosen message attack

for m₁,m₂,...,m_q attacker is given t_i ← S(k,m_i)

Attacker's goal: existential forgery

• produce some **new** valid message/tag pair (m,t).

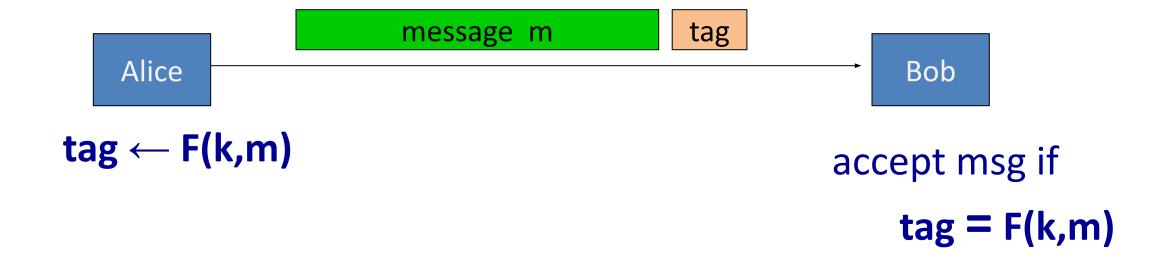
$$(m,t) \in \{ (m_1,t_1), \dots, (m_q,t_q) \}$$

⇒ attacker cannot produce a valid tag for a new message

Secure PRF ⇒ Secure MAC

For a PRF $F: K \times X \longrightarrow Y$ define a MAC $I_F = (S,V)$ as:

- S(k,m) := F(k,m)
- V(k,m,t): output 'yes' if t = F(k,m) and 'no' otherwise.



A bad example

Suppose F: $K \times X \longrightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a secure MAC system?

- Yes, the MAC is secure because the PRF is secure
- No tags are too short: anyone can guess the tag for any msg
- It depends on the function F

Security

<u>Thm</u>: If **F**: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e. |Y| is large) then I_F is a secure MAC.

In particular, for every eff. MAC adversary A attacking I_F there exists an eff. PRF adversary B attacking F s.t.:

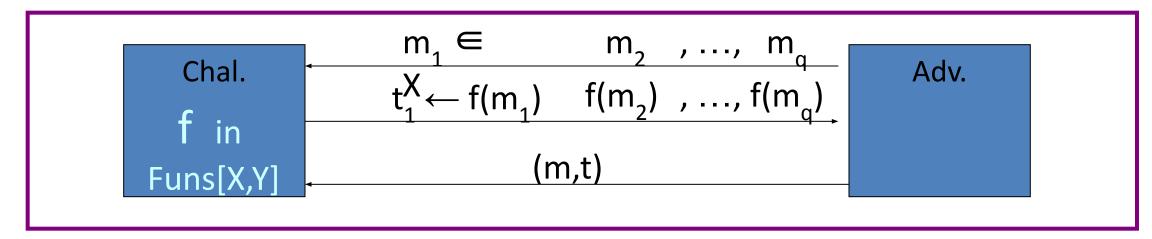
$$Adv_{MAC}[A, I_F] \le Adv_{PRF}[B, F] + 1/|Y|$$

 \Rightarrow I_F is secure as long as |Y| is large, say |Y| = 2^{128} .

Proof Sketch

Suppose $f: X \longrightarrow Y$ is a truly random function

Then MAC adversary A must win the following game:



A wins if t = f(m) and $m \notin \{m_1, ..., m_q\}$

 \Rightarrow Pr[A wins] = 1/|Y|

same must hold for F(k,x)

Examples

AES: a MAC for 16-byte messages.

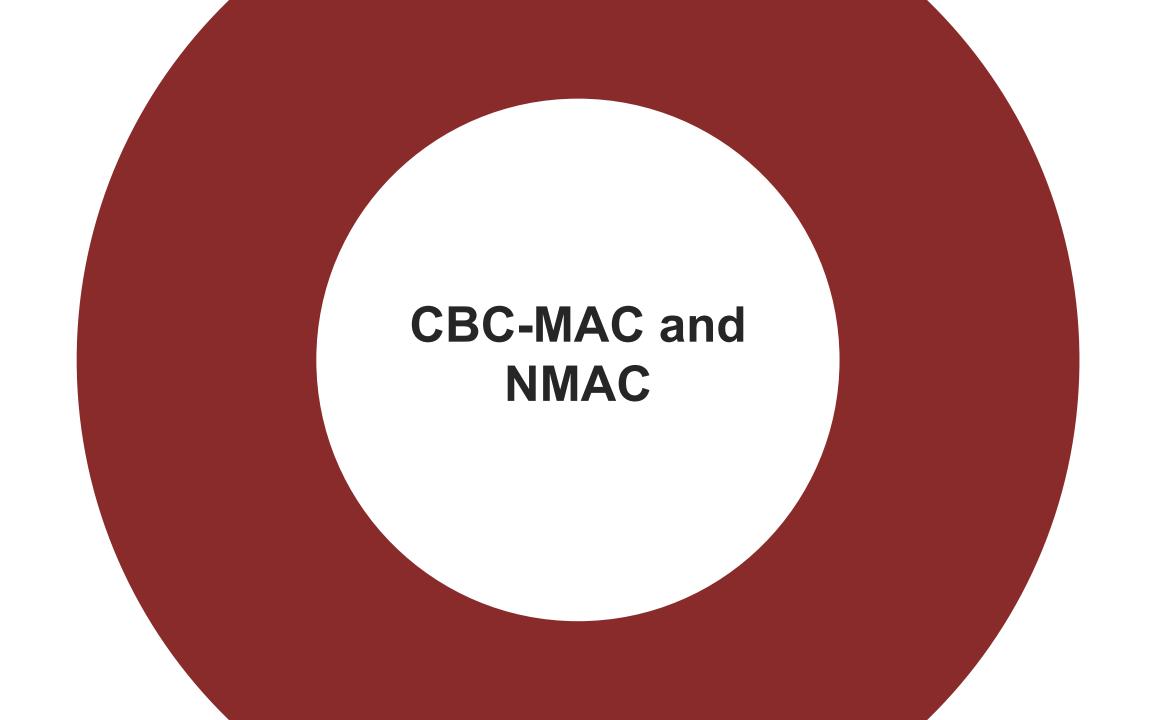
- Main question: how to convert Small-MAC into a Big-MAC ?
- Two main constructions used in practice:
 - CBC-MAC (banking ANSI X9.9, X9.19, FIPS 186-3)
 - HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.

Truncating MACs based on PRFs

```
Easy lemma: suppose F: K \times X \longrightarrow \{0,1\}^n is a secure PRF.
Then so is F_t(k,m) = F(k,m)[1...t] for all 1 \le t \le n
```

⇒ if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
 the truncated MAC outputting w bits is secure
 ... as long as 1/2^w is still negligible (say w≥64)



MACs and PRFs

Recall: secure PRF $\mathbf{F} \Rightarrow$ secure MAC, as long as |Y| is large S(k, m) = F(k, m)

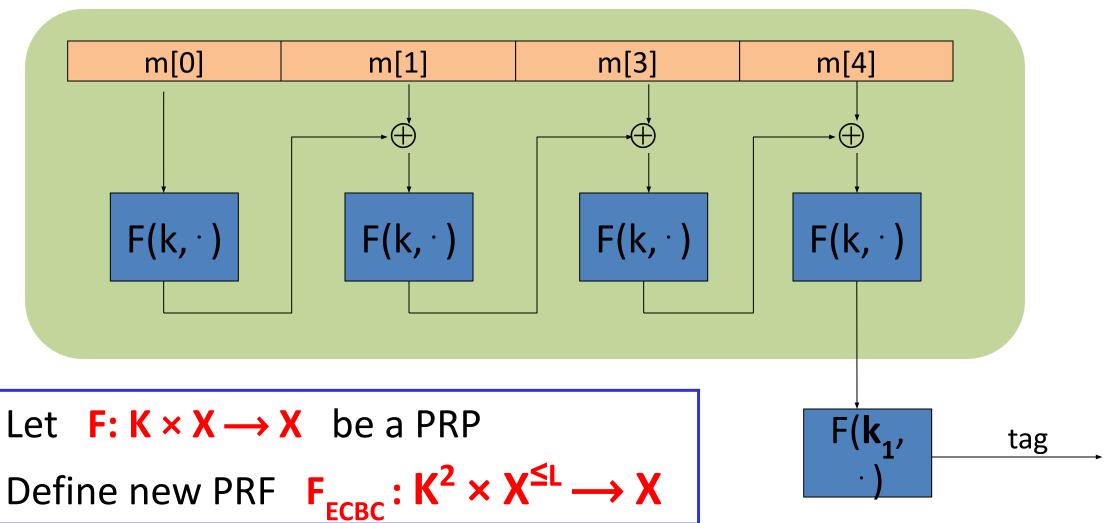
Our goal:

given a PRF for short messages (AES) construct a PRF for long messages

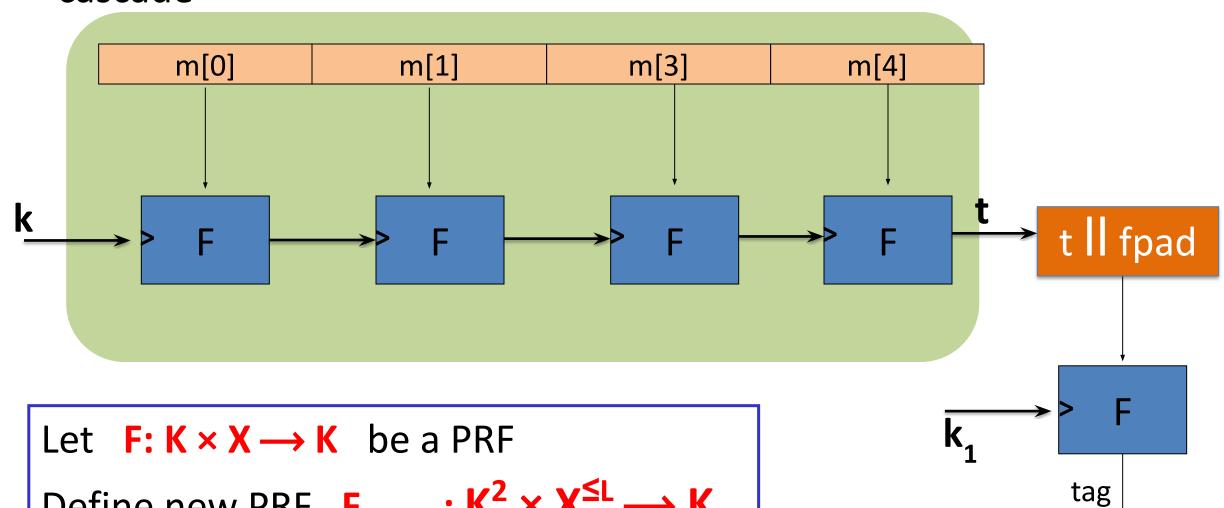
From here on let $X = \{0,1\}^n$ (e.g. n=128)

Construction 1: encrypted CBC-MAC

raw CBC



Construction 2: NMAC (nested MAC)



Define new PRF $F_{NMAC}: K^2 \times X^{\leq L} \longrightarrow K$

Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we define a MAC I = (S,V) where S(k,m) = cascade(k, m)

- This MAC is secure
- This MAC can be forged without any chosen msg queries
- This MAC can be forged with one chosen msg query
- This MAC can be forged, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC $I_{RAW} = (S,V)$ where S(k,m) = rawCBC(k,m)

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message m∈X
- Request tag for m. Get t = F(k,m)
- Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: rawCBC(k, (m, $t\oplus m$)) = F(k, F(k,m) \oplus (t \oplus m)) = F(k, $t\oplus$ (t \oplus m)) = t

ECBC-MAC and NMAC analysis

<u>Theorem</u>: For any L>0,

For every eff. q-query PRF adv. A attacking F_{ECBC} or F_{NMAC} there exists an eff. adversary B s.t.:

$$Adv_{PRF}[A, F_{ECBC}] \le Adv_{PRP}[B, F] + 2 q^2 / |X|$$

$$Adv_{PRF}[A, F_{NMAC}] \le q \cdot L \cdot Adv_{PRF}[B, F] + q^2 / 2|K|$$

CBC-MAC is secure as long as $q \ll |X|^{1/2}$ NMAC is secure as long as $q \ll |K|^{1/2}$ (2⁶⁴ for AES-128)

An example

$$Adv_{PRF}[A, F_{ECBC}] \le Adv_{PRP}[B, F] + 2 q^2 / |X|$$

q = # messages MAC-ed with k

Suppose we want $Adv_{PRF}[A, F_{ECBC}] \le 1/2^{32} \Leftrightarrow q^2/|X| < 1/2^{32}$

- AES: $|X| = 2^{128} \implies q < 2^{48}$ So, after 2^{48} messages must, must change key
- 3DES: $|X| = 2^{64} \implies q < 2^{16}$

The security bounds are tight: an attack

After signing $|X|^{1/2}$ messages with ECBC-MAC or $|K|^{1/2}$ messages with NMAC the MACs become insecure

Suppose the underlying PRF F is a PRP (e.g. AES)

• Then both PRFs (ECBC and NMAC) have the following extension property:

$$\forall x,y,w: F_{BIG}(k,x) = F_{BIG}(k,y) \Rightarrow F_{BIG}(k,x|w) = F_{BIG}(k,y|w)$$

The security bounds are tight: an attack

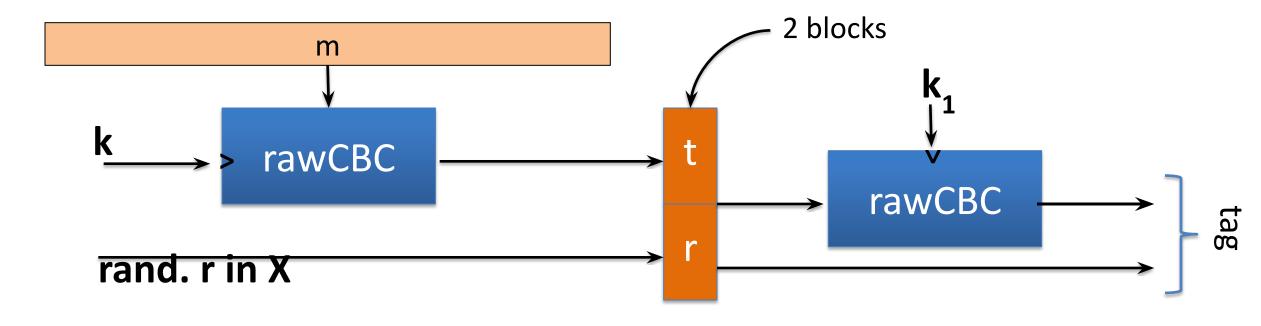
Let $F_{RIG}: K \times X \longrightarrow Y$ be a PRF that has the extension property

$$F_{BIG}(k, x) = F_{BIG}(k, y) \Rightarrow F_{BIG}(k, x | w) = F_{BIG}(k, y | w)$$

Generic attack on the derived MAC:

```
step 1: issue |Y|^{1/2} message queries for rand. messages in X. obtain (m_i, t_i) for i = 1, ..., |Y|^{1/2} step 2: find a collision t_u = t_v for u \neq v (one exists w.h.p by b-day paradox) step 3: choose some w and query for t := F_{BIG}(k, \mathbf{m}_u \mathbf{l} \mathbf{w}) step 4: output forgery (\mathbf{m}_v \mathbf{l} \mathbf{w}, \mathbf{t}). Indeed t := F_{BIG}(k, \mathbf{m}_v \mathbf{l} \mathbf{w})
```

Better security: a rand. construction



Let $F: K \times X \longrightarrow X$ be a PRF. Result: MAC with tags in X^2 .

Security: $Adv_{MAC}[A, I_{RCBC}] \le Adv_{PRP}[B, F] \cdot (1 + 2 q^2 / |X|)$

 \Rightarrow For 3DES: can sign $q=2^{32}$ msgs with one key

Comparison

ECBC-MAC is commonly used as an AES-based MAC

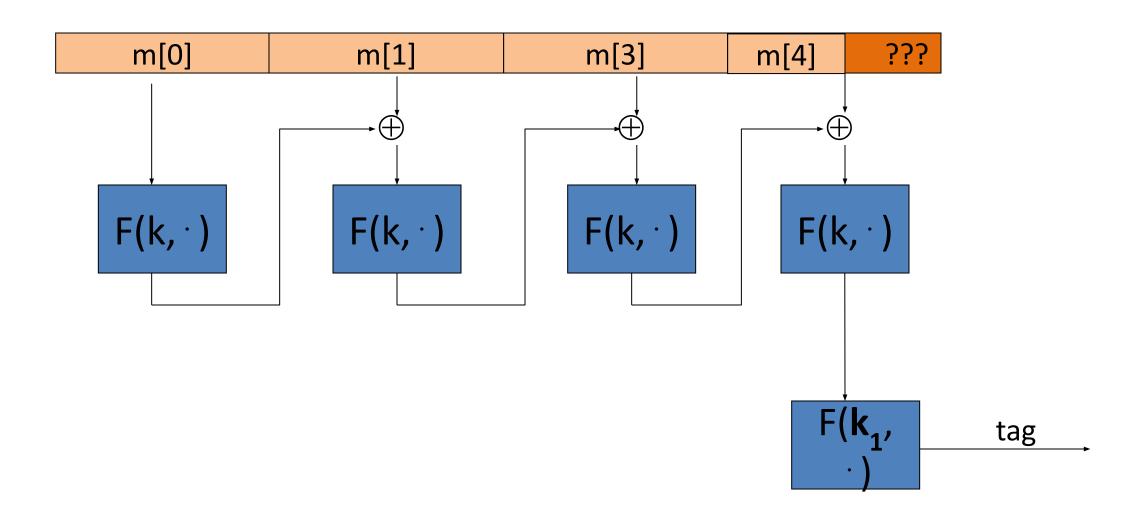
- CCM encryption mode (used in 802.11i)
- NIST standard called CMAC

NMAC not usually used with AES or 3DES

- Main reason: need to change AES key on every block requires re-computing AES key expansion
- But NMAC is the basis for a popular MAC called HMAC (next)

What about padding?

What if msg. len. is not multiple of block-size?



CBC MAC padding

Bad idea: pad m with 0's

m[0] m[1]	─	m[0]	m[1]	0000
-----------	----------	------	------	------

Is the resulting MAC secure?

- Yes, the MAC is secure
- It depends on the underlying MAC
- No, given tag on msg m attacker obtains tag on mll0

Problem: pad(m) = pad(mll0)

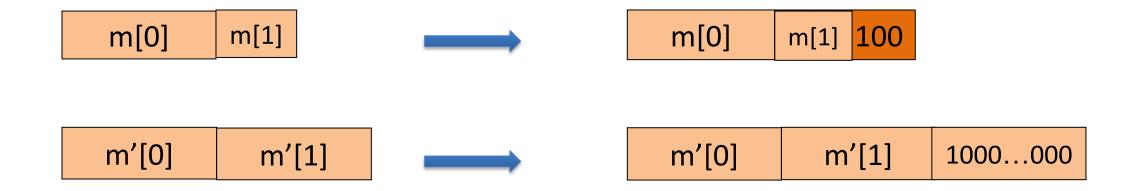
CBC MAC padding

For security, padding must be invertible!

$$len(m_0) \neq len(m_1) \Rightarrow pad(m_0) \neq pad(m_1)$$

ISO: pad with "1000...00". Add new dummy block if needed.

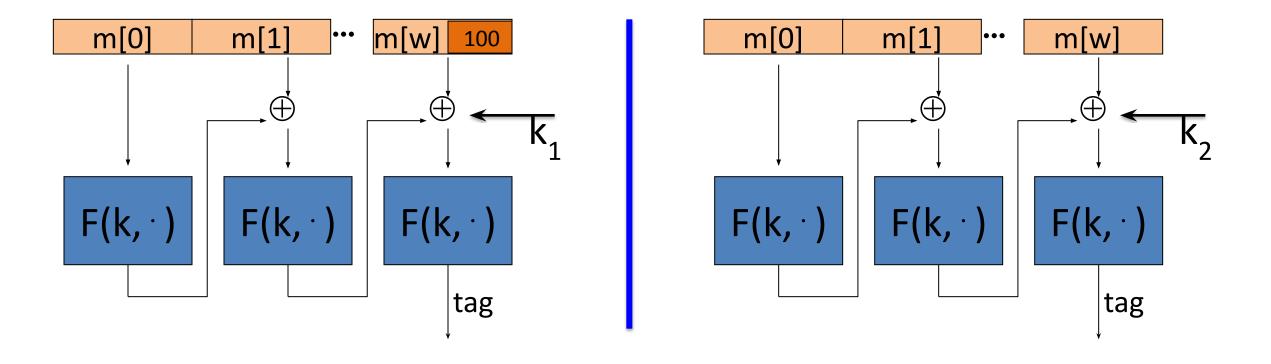
The "1" indicates beginning of pad.



CMAC (NIST standard)

Variant of CBC-MAC where $key = (k, k_1, k_2)$

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k₁ or k₂)



More MACs - More Fun!

- PMAC parallel MAC computation!
- One-time MAC / Many-time MAC
- Carter-Wegman MAC
- ... and many more

but we still didn't talk about the extremely common <u>HMAC (Hash</u> <u>MAC)</u>

Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps an arbitrary binary string to a string of n bits. $H: \{0, 1\}^* \rightarrow \{0, 1\}^n$

Message space much larger than output space

$$H: M -> T, |M| >> |T|$$

- Given the output, we want the input to remain secret and also make it hard for other inputs to get the same output (collision).
- Applications: everywhere (from storing passwords to commitment protocols)

Hash Function Properties

Let H: M -> T, |M| >> |T|

- Pre-image resistance. H is pre-image resistant if given a hash value h, it should be difficult to find any message m such that H(m) = h. In other words, P[H(random m) = h] = 1/|T|.
- Second pre-image resistance (weak collision resistance). H is second-preimage resistant if given a message m_1 , it should be difficult to find a different m_2 such that $H(m_1) = H(m_2)$.
- (Strong) Collision resistance. H is collision resistant if it is difficult to find any two different messages m_1 and m_2 such that $H(m_1) = H(m_2)$.

Collision Resistance => Second-preimage Resistance

Second-preimage Resistance => Preimage Resistance?

*only true under certain conditions (|M| >> |T|)

Collision Resistance Definition

```
Let H: M \rightarrowT be a hash function (|M| >> |T|)
A <u>collision</u> for H is a pair m_0, m_1 \subseteq M such that:
```

 $H(m_0) = H(m_1)$ and $m_0 \neq m_1$

A function H is <u>collision resistant</u> if for all (explicit) "eff" algs. A: $Adv_{CR}[A,H] = Pr[A \text{ outputs collision for H}]$

is "neg".

Example: SHA-256 (outputs 256 bits)

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!