AlGAecn #15 - Integrity

FOUNDATIONS

EOvIKS kal KatrodioTplako lNavetmiotripio ABnvwy
SOFTWARE

Eicaywyr) otnv Ao@aAsia

@avdaonc Auyepivog

SYSTEMS CRYPTO

THE GREAT THING ABOUT | | HARD DRIVES FAIL, FiLt) DEGRADES, PANT | |-
DIGITAL DATA ISTHAT | | OF COURSE, BUT THER | | CRACKS, BUT A COPY OF A

IT NEVER DEGRADES. BITS (AN BE (OPIED CENTURY-OLD DATR FILE. 1S
FOREVER WITHOUT LS. | | IDENTICAL O THE ORIGINAL.

IR

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (lots of slides from Dan

Boneh @ Stanford!)

HUMANS

https://users.ece.cmu.edu/~dbrumley/

AVOKOIVWOEIC / AIEUKPIVIOEIC

e H epyaoia #2 kAgivel oTic 30, unv ¢exaoouue 1o write up!

e H emmopevn epyacia Ba cival o web BEuara kal 6a avoicel atrd foouada

Tnv TTponNyouuevn popa

e Encryption Modes
o Electronic Code Book (ECB)
o Cipher Block Chaining (CBC)
o Counter Mode (CTR)

e Mistakes and Attacks

2NUEPQ

e Message Integrity
o Message Authentication Codes (MACs)
o CBC-MAC, NMAC, CMAC

e Introduction to Hashing

Security in the

News

Two brothers studying at MIT charged with stealing
$25 million worth of cryptocurrency

Two brothers studying at the prestigious Massachusetts Institute of Technology
(MIT) were arrested on Wednesday (May 15) and charged with stealing $25
million worth of cryptocurrency. Authorities said that the brothers- Anton Peraire-
Bueno, 24, and James Peraire-Bueno, 28,- carried out a cutting-edge scheme to
exploit the Ethereum blockchain's integrity and steal millions of dollars of
cryptocurrency, the news agency Reuters reported.

The brothers executed their elaborate heist in April last year, stealing $25 million
from traders in just 12 seconds by fraudulently gaining access to pending
transactions and altering the movement of cryptocurrency, authorities said.

At MIT, the brothers studied computer science and mathematics and developed
the skills and education they relied upon to carry out their fraud, prosecutors said
on Wednesday.

An indictment charged them with conspiracy to commit wire fraud, wire fraud, and
conspiracy to commit money laundering. The indictment alleged that for

months, the brothers plotted to manipulate and tamper with the protocols used to
validate transactions for inclusion on the Ethereum blockchain.

Message Integrity

Message Integrity

Goal: integrity, no confidentiality.

Examples:
— Transaction data / ledger.
— Communications.
— Public binaries on disk.

— Banner ads on web pages.

Message integrity: MACs

k- T mesagem g ﬁ

Generate tag (Sign): Verify tag: ,
tag < S(k, m) V(k, m, tag) = yes’

Def: MAC | =(S,V) defined over (K,M,T) is a pair of algs:

— S(k,m) outputs tinT
— V(k,m,t) outputs ‘yes' or 'no’

Integrity requires a secret key

Generate tag: Verify tag: .
tag «— CRC(m) V(m, tag) = ‘yes’

e Attacker can easily modify message m and re-compute CRC.

* CRC designed to detect random, not malicious errors.

Secure MACs

Attacker’s power: chosen message attack
e for m,m,,...,m attacker is given t — S(k,mi)

Attacker’s goal: existential forgery

 produce some new valid message/tag pair (m,t).
(mt) & {(myt), ..., (mt)}

= attacker cannot produce a valid tag for a new message

= given (m,t) attacker cannot even produce (m,t’) for t' #t

Secure MACs

e ForaMAC I=(S,V) and adv. A define a MAC game as:

m € M m., ,...,m
t, «<S(k,m,) t, ...t

(m,t)

!
b=1 if V(k,mt)="yes’” and (mt) & {(m,t), ..., (m_ t)}
b=0 otherwise

Def: 1=(S,V) is a secure MAC if for all “efficient” A:
Adv . [A/l] = Pr[Chal. outputs 1] s “negligible.”

Let | =(S,V) be a MAC.
Suppose an attacker is able to find m_ 7 m_ such that

S(k, m) =S(k, m,) for 7% of the keys kin K
Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m or m,

No, this MAC can be broken using a chosen msg attack
It depends on the details of the MAC

O O O O

Let | =(S,V) be a MAC.
Suppose S(k,m) is 5 bits long

Can this MAC be secure?

O No, an attacker can simply guess the tag for messages

O It depends on the details of the MAC

O Yes, the attacker cannot generate a valid tag for any message
O

Example: protecting system files

Suppose at install time the system computes:
F F coo F k derived from
1 2 . user’s password

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password
— Then: secure MAC = all modified files will be detected

Using PRFs to build

MACs

Review: Secure MACs

MAC: signing alg. S(k,m)—t and verification alg. V(k,m,t) —0,1

Attacker’s power: chosen message attack
e for m,m,,...,m attacker is given t — S(k,mi)

Attacker’s goal: existential forgery
 produce some new valid message/tag pair (m,t).

(mt) & {(m,t), ..., (m t)}

= attacker cannot produce a valid tag for a new message

Secure PRF = Secure MAC

Fora PRF F:KxX —Y definea MAC | =(S\V) as:

— S(k,m) := F(k,m)

— V(k,m,t): output 'yes if t=F(k,m)and ‘no’ otherwise.

tag

tag — F(k,m)

Bob

accept msg if

tag = F(k,m)

A bad example
Suppose F:KxX —Y isasecure PRFwith Y ={0,1}*°

Is the derived MAC | a secure MAC system?

O Yes, the MAC is secure because the PRF is secure
No tags are too short: anyone can guess the tag for any msg

It depends on the function F

O O O

Security

Thm: If F: KxX—Y is a secure PRF and 1/|Y| is negligible

(i.,e. |Y|islarge) then | is a secure MAC.

In particular, for every eff. MAC adversary A attacking |_

there exists an eff. PRF adversary B attacking F s.t.:

[A, 1] < Adv,[B,F] + 1/]Y]

MAC PRF

= |_issecureaslongas |Y| islarge, say |Y|=2".

Proof Sketch

Suppose f: X —Y isa truly random function

Then MAC adversary A must win the following game:

Funs[X,y] | (m,t)

A winsif t=f(m) and mEE{ml,...,mq}

= Pr[Awins]=1/|Y]|
same must hold for F(k,x)

Examples

AES: a MAC for 16-byte messages.

Main question: how to convert Small-MAC into a Big-MAC ?

Two main constructions used in practice:
— CBC-MAC (banking — ANSI X9.9, X9.19, FIPS 186-3)
— HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.

Truncating MACs based on PRFs

Easy lemma: suppose F:KxX —{0,1}" is a secure PRF.
Thensois F(k,m)=F(km)[1l...t] forall 1=t=n

= if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
the truncated MAC outputting w bits is secure

... as longas 1/2% is still negligible (say w=64)

CBC-MAC and

NMAC

MACs and PRFs

Recall: secure PRF F = secure MAC, aslongas |Y] islarge
S(k, m) = F(k, m)

Our goal:
given a PRF for short messages (AES)
construct a PRF for long messages

From hereon let X={0,1}" (e.g. n=128)

Construction 1: encrypted CBC-MAC

raw CBC

m|[0]

A A

let F:KxX—X beaPRP

tag

: . w2 <L
Define new PRF Foonc Kex X=-— X

Construction 2: NMAC (rested mac)

cascade

m[O] m[1] m[3] m[4]

Llet F: KxX—K beaPRF
Define new PRF F K2 x X3t — K

NMAC *

Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we definea MAC 1= (S,V) where

S(k,m) = cascade(k, m)

O This MAC is secure

O This MAC can
O This MAC can
O This MAC can

oe forgeco

oe forgeco

oe forgeco

without any chosen msg queries
with one chosen msg query

, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we definea MAC | = (SV) where
S(k,m) = rawCBC(k,m)

Then | is easily broken using a 1-chosen msg attack.

Adversary works as follows:
— Choose an arbitrary one-block message me&X
— Request tag form. Get t=F(k,m)
— Output t as MAC forgery for the 2-block message (m, t®m)

Indeed: rawCBC(k, (m, t®m)) = F(k, F(k,m)®(t®m)) = F(k, t&(t®m)) = t

ECBC-MAC and NMAC analysis

Theorem: For any L>0,

For every eff. g-query PRF adv. A attacking F__,.or F .

there exists an eff. adversary B s.t.:

[A,F__]< Adv__[B,F] + 29%/ |X]

PRF ECBC

[A, F

PRP

]< gq-L'Adv__[B, F] + g%/ 2]|K]|

PRF NMAC PRF

CBC-MAC is secure as longas g << |X|Y?

NMAC is secure as long as q << |K|? (254 for AES-128)

An example
1< Adv, [B, F] + 22/ |X] J

{ Adv

PRF[ECBC

g = # messages MAC-ed with k

Suppose we want Adv] < 1/232 & g% /|X]| <1/ 2%

PRF[A' I:ECBC
e AES: |X|=2'® = g<2%

248

So, after messages must, must change key

e 3DES: |X|=2% = qg<2%

The security bounds are tight: an attack

After signing |X|Y? messages with ECBC-MAC or
|K|Y? messages with NMAC
the MACs become insecure

Suppose the underlying PRF F is a PRP (e.g. AES)

 Then both PRFs (EcBc and NMAC) have the following
extension property:

VXIyIW: FBIG(k’ X) = FBIG(k’ y) = FB|G(k’ XIIW) = I:BIG

(k, yllw)

The security bounds are tight: an attack
Let F, :KxX—Y be aPRF that has the extension property

BIG(k X)=F,(ky) = F, (k xllw)=F__(k yllw)
Generic attack on the derived MAC:

step 1: issue |Y|¥? message queries for rand. messages in X.
obtain (m,t) fori=1,.., Y[
step 2: find a collision t =t for u#Zv (one exists w.h.p by b-day paradox)

step 3: choose some w and query for t:=F_ (k, mullw)

BIG

step 4: output forgery (m llw, t). Indeed t:=F_ (k, mvllw)

Better security: a rand. construction

2 blocks

k1
!

m
-

rand. rin X

Llet F:KxX—X beaPRF. Result: MAC with tags in X°.

Security: Adv_[A] < Adv

MAC [B,F] - (1+ 2q*/ |X])

’IRCBC PRP

= For 3DES: can sign =232 msgs with one key

>

:

=

gel

Comparison

ECBC-MAC is commonly used as an AES-based MAC
e CCM encryption mode (used in 802.11i)
* NIST standard called CMAC

NMAC not usually used with AES or 3DES
* Main reason: need to change AES key on every block

requires re-computing AES key expansion
 But NMAC is the basis for a popular MAC called HMAC (next)

What about padding?

What if msg. len. is not multiple of block-size?

m|[0] ml1]

|

@

w

CBC MAC padding

Bad idea: pad m with O’s

m[0] M[1] | — m[0] m[1] | 0000]

Is the resulting MAC secure?

O Yes, the MAC is secure

O It depends on the underlying MAC

O No, given tag on msg m attacker obtains tag on mll0
O

Problem: pad(m) = pad(mllO)

CBC MAC padding

For security, padding must be invertible |

len(m)#len(m,) = pad(m) # pad(m.)

ISO: pad with “1000...00". Add new dummy block if needed.

— The "17 indicates beginning of pad.

m[0] m([1] — m|[0] m[1] -

m’[0] m’[1] m’[0] m’[1] | 1000...000

l

CMAC (NIST standard)

Variant of CBC-MAC where key = (k, k., k)
* No final encryption step (extension attack thwarted by last keyed xor)
* No dummy block (ambiguity resolved by use of k. or k)

m[O] m[1] | |m[w][200] m[O0] m[1]

1
| |
4 =

|

More MACs - More Fun!

e PMAC - parallel MAC computation!
e One-time MAC / Many-time MAC
e Carter-Wegman MAC

e ... and many more

but we still didn't talk about the extremely common HMAC (Hash
MAC

41

Hashes and

Resistance

42

Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps
an arbitrary binary string to a string of n bits. H : {0, 1} -> {0,1}"

e Message space much larger than output space
H:M->T, |M| >> |T|

e Given the output, we want the input to remain secret and also
make it hard for other inputs to get the same output
(collision).

e Applications: everywhere (from storing passwords,

43

Hash Function Properties

Let H: M ->T, [M]| >> |T|

e Pre-image resistance. H is pre-image resistant if given a hash
value h, it should be difficult to find any message m such that
H(m) = h. In other words, P[H(random m) = h] = 1/|T]|.

e Second pre-image resistance (weak collision resistance). H is
second-preimage resistant if given a message m,, it should be
difficult to find a different m_ such that H(ml) = H(mz).

e (Strong) Collision resistance. H is collision resistant if it is
difficult to find any two different messages m, and m, such
that H(m_) = H(m,).

44

Collision Resistance =>
Second-preimage Resistance

45

Second-preimage Resistance =>
Preimage Resistance?

*only true under certain conditions ([M]| >> |T|)

46

Collision Resistance Definition

Let H: M —T be a hash function ([M]>>]|T]|)

A collision for His a pair m , m, € M such that:
H(m,) = H(m) and m #m,

A function H is collision resistant if for all (explicit) “eff” algs. A:
AdeR[A,H] = Pr[A outputs collision for H]

is “‘neg’.

Example: SHA-256 (outputs 256 bits)

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

