
Θανάσης Αυγερινός

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Εισαγωγή στην Ασφάλεια
SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Διάλεξη #15 - Integrity

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (lots of slides from Dan
Boneh @ Stanford!)

https://users.ece.cmu.edu/~dbrumley/

Ανακοινώσεις / Διευκρινίσεις

2

● Η εργασία #2 κλείνει στις 30, μην ξεχάσουμε το write up!

● Η επόμενη εργασία θα είναι σε web θέματα και θα ανοίξει από βδομάδα

Την προηγούμενη φορά

3

● Encryption Modes

○ Electronic Code Book (ECB)

○ Cipher Block Chaining (CBC)

○ Counter Mode (CTR)

● Mistakes and Attacks

Σήμερα

4

● Message Integrity

○ Message Authentication Codes (MACs)

○ CBC-MAC, NMAC, CMAC

● Introduction to Hashing

5

Security in the
News

6

7

Message Integrity

Message Integrity
Goal: integrity, no confidentiality.

Examples:

– Transaction data / ledger.

– Communications.

– Public binaries on disk.

– Banner ads on web pages.

Message integrity: MACs

Def: MAC I = (S,V) defined over (K,M,T) is a pair of algs:

– S(k,m) outputs t in T

– V(k,m,t) outputs `yes’ or `no’

Alice Bob

k k
message m tag

Generate tag (Sign):
 tag ← S(k, m)

Verify tag:
 V(k, m, tag) = `yes’

?

Integrity requires a secret key

• Attacker can easily modify message m and re-compute CRC.

• CRC designed to detect random, not malicious errors.

Alice Bob
message m tag

Generate tag:
 tag ← CRC(m)

Verify tag:
 V(m, tag) = `yes’?

Secure MACs
Attacker’s power: chosen message attack

• for m
1
,m

2
,…,m

q
 attacker is given t

i
 ← S(k,m

i
)

Attacker’s goal: existential forgery

• produce some new valid message/tag pair (m,t).

(m,t) ∉ { (m
1
,t

1
) , … , (m

q
,t

q
) }

⇒ attacker cannot produce a valid tag for a new message

⇒ given (m,t) attacker cannot even produce (m,t’) for t’ ≠ t

Secure MACs
• For a MAC I=(S,V) and adv. A define a MAC game as:

Def: I=(S,V) is a secure MAC if for all “efficient” A:

 Adv
MAC

[A,I] = Pr[Chal. outputs 1] is “negligible.”

Chal. Adv.
k←K

(m,t)

m
1
 ∈ M

t
1
 ←S(k,m

1
)

b=1 if V(k,m,t) = `yes’ and (m,t) ∉ { (m
1
,t

1
) , … , (m

q
,t

q
) }

b=0 otherwise

b

m
2

, …, m
q

t
2

, …, t
q

Template
vertLeftWhite2

Let I = (S,V) be a MAC.

Suppose an attacker is able to find m
0
 ≠ m

1
 such that

S(k, m
0
) = S(k, m

1
) for ½ of the keys k in K

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for m
0
 or m

1

No, this MAC can be broken using a chosen msg attack

It depends on the details of the MAC

Template
vertLeftWhite2

Let I = (S,V) be a MAC.

Suppose S(k,m) is 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message

It depends on the details of the MAC

No, an attacker can simply guess the tag for messages

Example: protecting system files

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

– Then: secure MAC ⇒ all modified files will be detected

Suppose at install time the system computes:

F
1

t
1
 = S(k,F

1
)

F
2

t
2
 = S(k,F

2
)

F
n

t
n
 = S(k,F

n
)

⋯ k derived from
user’s password

filename filename filename

16

Using PRFs to build
MACs

Review: Secure MACs
MAC: signing alg. S(k,m)⟶t and verification alg. V(k,m,t) ⟶0,1

Attacker’s power: chosen message attack

• for m
1
,m

2
,…,m

q
 attacker is given t

i
 ← S(k,m

i
)

Attacker’s goal: existential forgery

• produce some new valid message/tag pair (m,t).

(m,t) ∉ { (m
1
,t

1
) , … , (m

q
,t

q
) }

⇒ attacker cannot produce a valid tag for a new message

Secure PRF ⇒ Secure MAC
For a PRF F: K × X ⟶ Y define a MAC I

F
 = (S,V) as:

– S(k,m) := F(k,m)

– V(k,m,t): output `yes’ if t = F(k,m) and `no’ otherwise.

Alice Bob
message m tag

tag ← F(k,m) accept msg if

 tag = F(k,m)

Template
vertLeftWhite2

A bad example

Suppose F: K × X ⟶ Y is a secure PRF with Y = {0,1}10

 Is the derived MAC I
F
 a secure MAC system?

Yes, the MAC is secure because the PRF is secure

No tags are too short: anyone can guess the tag for any msg

It depends on the function F

Security
Thm: If F: K×X⟶Y is a secure PRF and 1/|Y| is negligible

(i.e. |Y| is large) then I
F
 is a secure MAC.

In particular, for every eff. MAC adversary A attacking I
F

there exists an eff. PRF adversary B attacking F s.t.:

Adv
MAC

[A, I
F
] ≤ Adv

PRF
[B, F] + 1/|Y|

⇒ I
F
 is secure as long as |Y| is large, say |Y| = 2128 .

Proof Sketch
Suppose f: X ⟶ Y is a truly random function

Then MAC adversary A must win the following game:

A wins if t = f(m) and m ∉ { m
1
 , … , m

q
 }

⇒ Pr[A wins] = 1/|Y|

Chal. Adv.

f in
 Funs[X,Y] (m,t)

m
1
 ∈

Xt
1
 ← f(m

1
)

m
2

, …, m
q

f(m
2
) , …, f(m

q
)

same must hold for F(k,x)

Examples

• AES: a MAC for 16-byte messages.

• Main question: how to convert Small-MAC into a Big-MAC ?

• Two main constructions used in practice:

– CBC-MAC (banking – ANSI X9.9, X9.19, FIPS 186-3)

– HMAC (Internet protocols: SSL, IPsec, SSH, …)

• Both convert a small-PRF into a big-PRF.

Truncating MACs based on PRFs

Easy lemma: suppose F: K × X ⟶ {0,1}n is a secure PRF.

Then so is F
t
(k,m) = F(k,m)[1…t] for all 1 ≤ t ≤ n

⇒ if (S,V) is a MAC is based on a secure PRF outputting n-bit tags

the truncated MAC outputting w bits is secure

 … as long as 1/2w is still negligible (say w≥64)

24

CBC-MAC and
NMAC

MACs and PRFs

Recall: secure PRF F ⇒ secure MAC, as long as |Y| is large

S(k, m) = F(k, m)

Our goal:

given a PRF for short messages (AES)

construct a PRF for long messages

From here on let X = {0,1}n (e.g. n=128)

raw CBC

Construction 1: encrypted CBC-MAC

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] m[4]

⊕⊕

F(k,⋅)

⊕

F(k
1
,

⋅)
tagLet F: K × X ⟶ X be a PRP

Define new PRF F
ECBC

: K2 × X≤L ⟶ X

cascade

Construction 2: NMAC (nested MAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag

Let F: K × X ⟶ K be a PRF

Define new PRF F
NMAC

: K2 × X≤L ⟶ K

> > > >k
t ll fpad

>
k

1

t

Template
vertLeftWhite2

Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we define a MAC I = (S,V) where

S(k,m) = cascade(k, m)

This MAC is secure

This MAC can be forged without any chosen msg queries

This MAC can be forged with one chosen msg query

This MAC can be forged, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC I
RAW

 = (S,V) where

S(k,m) = rawCBC(k,m)

Then I
RAW

 is easily broken using a 1-chosen msg attack.

Adversary works as follows:

– Choose an arbitrary one-block message m∈X

– Request tag for m. Get t = F(k,m)

– Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: rawCBC(k, (m, t⊕m)) = F(k, F(k,m)⊕(t⊕m)) = F(k, t⊕(t⊕m)) = t

ECBC-MAC and NMAC analysis

Theorem: For any L>0,

For every eff. q-query PRF adv. A attacking F
ECBC

or F
NMAC

there exists an eff. adversary B s.t.:

 Adv
PRF

[A, F
ECBC

] ≤ Adv
PRP

[B, F] + 2 q2 / |X|

Adv
PRF

[A, F
NMAC

] ≤ q⋅L⋅Adv
PRF

[B, F] + q2 / 2|K|

CBC-MAC is secure as long as q << |X|1/2

NMAC is secure as long as q << |K|1/2 (264 for AES-128)

An example

q = # messages MAC-ed with k

Suppose we want Adv
PRF

[A, F
ECBC

] ≤ 1/232 ⇐ q2 /|X| < 1/ 232

• AES: |X| = 2128 ⇒ q < 248

So, after 248 messages must, must change key

• 3DES: |X| = 264 ⇒ q < 216

Adv
PRF

[A, F
ECBC

] ≤ Adv
PRP

[B, F] + 2 q2 / |X|

The security bounds are tight: an attack

After signing |X|1/2 messages with ECBC-MAC or

|K|1/2 messages with NMAC

the MACs become insecure

Suppose the underlying PRF F is a PRP (e.g. AES)

• Then both PRFs (ECBC and NMAC) have the following
extension property:

 ∀x,y,w: F
BIG

(k, x) = F
BIG

(k, y) ⇒ F
BIG

(k, xllw) = F
BIG

(k, yllw)

The security bounds are tight: an attack
Let F

BIG
: K × X ⟶ Y be a PRF that has the extension property

F
BIG

(k, x) = F
BIG

(k, y) ⇒ F
BIG

(k, xllw) = F
BIG

(k, yllw)

Generic attack on the derived MAC:

step 1: issue |Y|1/2 message queries for rand. messages in X.

obtain (m
i
, t

i
) for i = 1 ,…, |Y|1/2

step 2: find a collision t
u
 = t

v
 for u≠v (one exists w.h.p by b-day paradox)

step 3: choose some w and query for t := F
BIG

(k, m
u
llw)

step 4: output forgery (m
v
llw, t). Indeed t := F

BIG
(k, m

v
llw)

Better security: a rand. construction

Let F: K × X ⟶ X be a PRF. Result: MAC with tags in X2.

Security: Adv
MAC

[A, I
RCBC

] ≤ Adv
PRP

[B, F] ⋅ (1 + 2 q2 / |X|)

⇒ For 3DES: can sign q=232 msgs with one key

m

rawCBC>k t

rrand. r in X

rawCBC
>

tag

2 blocks

k
1

Comparison

ECBC-MAC is commonly used as an AES-based MAC

• CCM encryption mode (used in 802.11i)

• NIST standard called CMAC

NMAC not usually used with AES or 3DES

• Main reason: need to change AES key on every block

requires re-computing AES key expansion

• But NMAC is the basis for a popular MAC called HMAC (next)

What about padding?

What if msg. len. is not multiple of block-size?

F(k,⋅) F(k,⋅) F(k,⋅)

m[0] m[1] m[3] ???

⊕⊕

F(k,⋅)

⊕

F(k
1
,

⋅)
tag

m[4]

Template
vertLeftWhite2

CBC MAC padding

Yes, the MAC is secure

No, given tag on msg m attacker obtains tag on mll0
It depends on the underlying MAC

m[0] m[1] m[0] 0000m[1]

Bad idea: pad m with 0’s

Is the resulting MAC secure?

Problem: pad(m) = pad(mll0)

CBC MAC padding
For security, padding must be invertible !

len(m
0
)≠ len(m

1
) ⇒ pad(m

0
) ≠ pad(m

1
)

ISO: pad with “1000…00”. Add new dummy block if needed.

– The “1” indicates beginning of pad.

m[0] m[1] m[0] 100m[1]

m’[0] m’[1] m’[0] m’[1] 1000…000

CMAC (NIST standard)

Variant of CBC-MAC where key = (k, k
1
, k

2
)

• No final encryption step (extension attack thwarted by last keyed xor)

• No dummy block (ambiguity resolved by use of k
1
 or k

2
)

F(k,⋅) F(k,⋅)

m[0]

⊕

m[1] m[w]

F(k,⋅)

⊕

⋯

tag

100

k
1

F(k,⋅) F(k,⋅)

m[0]

⊕

m[1] m[w]

F(k,⋅)

⊕

⋯

tag

k
2

More MACs - More Fun!

● PMAC - parallel MAC computation!
● One-time MAC / Many-time MAC
● Carter-Wegman MAC
● … and many more

but we still didn't talk about the extremely common HMAC (Hash
MAC)

41

42

Hashes and
Resistance

Cryptographic Hash Functions

A Cryptographic Hash Function (CHF) is an algorithm that maps
an arbitrary binary string to a string of n bits. H : {0, 1}* -> {0,1}n

● Message space much larger than output space
H: M -> T, |M| >> |T|

● Given the output, we want the input to remain secret and also
make it hard for other inputs to get the same output
(collision).

● Applications: everywhere (from storing passwords,
43

Hash Function Properties

Let H: M -> T, |M| >> |T|

● Pre-image resistance. H is pre-image resistant if given a hash
value h, it should be difficult to find any message m such that
H(m) = h. In other words, P[H(random m) = h] = 1/|T|.

● Second pre-image resistance (weak collision resistance). H is
second-preimage resistant if given a message m

1
, it should be

difficult to find a different m
2
 such that H(m

1
) = H(m

2
).

● (Strong) Collision resistance. H is collision resistant if it is
difficult to find any two different messages m

1
 and m

2
 such

that H(m
1
) = H(m

2
).

44

Collision Resistance =>
Second-preimage Resistance

45

Second-preimage Resistance =>
Preimage Resistance?

46

*only true under certain conditions (|M| >> |T|)

Collision Resistance Definition

Let H: M →T be a hash function (|M| >> |T|)

A collision for H is a pair m
0
 , m

1
 ∈ M such that:

H(m
0
) = H(m

1
) and m

0
 ≠ m

1

A function H is collision resistant if for all (explicit) “eff” algs. A:

 Adv
CR

[A,H] = Pr[A outputs collision for H]

is “neg”.

Example: SHA-256 (outputs 256 bits)

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

