
Θανάσης Αυγερινός

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Εισαγωγή στην Ασφάλεια

SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Διάλεξη #13 - On
Randomness

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (some slides from Dan
Boneh @ Stanford!)

https://users.ece.cmu.edu/~dbrumley/

Την προηγούμενη φορά

2

● About cryptography

● Terminology

● Traditional ciphers

● One-time pad

Ανακοινώσεις / Διευκρινίσεις

3

● Αναπλήρωση διάλεξης την Παρασκευή 2 Μαΐου, 11πμ - Αίθουσα Β

● Είσαι σίγουρος ότι είναι ΟΚ να επιτρέπουμε το κλειδί "0" σε OTP; Ή

αντίστοιχα κλειδιά τα οποία έχουν συγκεκριμένα patterns;

Σήμερα

4

● Problems with just OTP

● Randomness and Pseudorandomness

● Probability and Math Reminders

● PseudoRandom Functions (PRFs)

● PseudoRandom Permutations (PRPs)

The “Bad News” Theorem

5

Theorem: Perfect secrecy requires |K| >= |M|

In practice, we usually shoot for
computational security

6

The OTP provides perfect secrecy …

... but is that enough?

More bad news

No Integrity

7

m
enc (⊕k)

m ⊕ k

m ⊕ k ⊕ evilm ⊕ evil
dec (⊕k)

?

⊕
evil

?

Eve

m ⊕ k

No Integrity

8

From: Bob
enc (⊕k)

From: Bob

From: EveFrom: Eve
dec (⊕k)

⊕
00 00 00
00 00 00
07 19 07

Eve

Our Goal: Secure Communication

9

Alice Bob

Public Channel

Eve

E D
c c

’

m

k

m or
error

k

read/write
access

Sub Goal 2: Integrity
Eve should not be able to alter m

without detection

Detecting Modifications

10

Bob should be able to determine if M’=M

Ex: Eve should not be able to change Alice’s message without
detection (even if Eve doesn’t know content of M)

Alice Bob

M = “I
{Love,Hate}

you”

Eve

(read/write)

Receives
M’

Our Goal: Secure Communication

11

Alice Bob

Public Channel

Eve

E D
c c

’

m

k

m or
error

k

read/write
access

Sub Goal 3: Authenticity
Eve should not be able to forge messages as

Alice

Detecting Message Injection

12

Bob should be able to determine whether M was sent by Alice

Alice Bob

M =
“I Love you,
signed Alice”

Eve

(read/write)

Our Goal: Secure Communication

13

Alice Bob

Public Channel

Eve

E D
c c

’

m

k

m or
error

k

read/write
access

Secure Communication means:
Secrecy, Integrity, and Authenticity

Still open: the pieces we need for
secure communication

14

Symmetric Trust Model Asymmetric Trust Model

Message Privacy Private key encryption
• Stream Ciphers
• Block Ciphers

Asymmetric encryption
 (aka public-key encryption)

Message Authenticity and
Integrity

Message Authentication Code (MAC) Digital Signature Scheme

Everyone shares
same secret k

Only 1 party
has a secret

Principle 1: All algorithms are public (Kerckhoffs’s Principle)
Principle 2: Security is determined only by key size
Principle 3: If you roll your own, it will be insecure

15

A Crucial Ingredient:
Randomness!

Crucial Ingredient: Randomness

16

• Explicit usage

– Generate secret keys

– Generate random “nonces” for encryption (more later on)

• Less obvious usage:

– Generate passwords for new users

– Shuffle cards in a poker game or votes in an election

– Choose which work items to audit for correctness

Insecure Randomness: C rand()

17

• Many languages have a built-in “random” function

unsigned long int next = 1;

/* srand: set seed for rand() */
void srand(unsigned int seed) {
 next = seed;
}

/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {
 next = next * 1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;
}

What’s the problem?

Insecure Randomness: C rand()

18

• Many languages have a built-in “random” function

• Given a few outputs, remaining values are predictable!

https://xkcd.com/221/

19

More Details
 “How We Learned to Cheat at Online Poker: A Study in Software Security”

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-
at-Online-Poker-A-Study-in-Software-Security.htm

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

Sony PS3 vs. Randomness

20

• 2010/2011: Hackers found/released private root key for PS3

• Key used to sign software

– Load any software on PS3 and execute as “trusted”

– i.e., Anyone can pretend to be Sony

• Flaw: Used same “random” number for every ECDSA signature

More Details
https://events.ccc.de/congress/2010/Fahrplan/attachments/
1780_27c3_console_hacking_2010.pdf

https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

So… where does randomness come from?

21

http://dilbert.com/strip/2001-10-25

Obtaining “True” Randomness

22

• Gather entropy from unpredictable events

Ex: Linux “entropy pool” includes mouse & keyboard timing

– Exposed via
• /dev/random – NEVER USE /dev/random – its API is broken and wrong

• /dev/urandom – beware of subtle issues with file descriptors and child processes!!!

• getrandom syscall – always use this syscall when available

• Randomness in the Operating System, or How To Keep Evil Children Out Of Your Pool
and Other Random Facts – Corrgan-Gibbs and Jana

• Physical random sources (do not use directly!)

– RDRAND instruction

– External devices

More fun conversations at:
https://lwn.net/Articles/889452/

https://www.usenix.org/conference/hotos15/workshop-program/presentation/corrigan-gibbs
https://www.usenix.org/conference/hotos15/workshop-program/presentation/corrigan-gibbs
https://lwn.net/Articles/889452/

Quiz Question

23

Which of the following is likely to consistently
provide secure randomness any time you query it?

A. C’s rand() function

B. /dev/urandom

C. Physical random sources

D. /dev/random

Think this is an easy choice? Think again!

https://www.thomas-huehn.com/myths-about-urandom/

24

Couple of Reminders
from Probability

Probability 101

25

U: finite set (e.g. U = {0,1}n)

Probability distribution P over U is a function P: U ⟶ [0,1] s.t.

A ⊆ U is called an event and

A random variable is a function X:U⟶V .

● X takes values in U and defines a distribution on V

Independence

26

Definition: events A and B are independent if Pr[A and B] = Pr[A] * Pr[B]

Random variables X,Y taking values in V are independent if

 ∀a,b∈V: Pr[X=a and Y=b] = Pr[X=a] * Pr[Y=b]

Example: U = {0,1}2 = {00, 01, 10, 11} and r ⟵ U

Define r.v. X and Y as: X = lsb(r), Y = msb(r)

 Pr[X=0 and Y=0] = Pr[r=00] = ¼ = Pr[X=0] * Pr[Y=0]

$

The Birthday Paradox

27

In a room of 23 people, the probability that you share a

birthday with one other person is greater than 50%.

The Birthday Paradox

28

Let r
1
, …, r

n
 ∈ U be indep. identically distributed random

vars.

Theorem: when n= 1.2 × |U|1/2 then Pr[∃i≠j: r
i
 = r

j
] ≥ ½

Example: Let U = {0,1}128

 After sampling about 264 random messages from U,

 some two sampled messages will likely be the same

|U|=106

samples n

co
lli

si
o

n
 p

ro
b

ab
ili

ty

30

Random Functions
and Permutations

Thinking About Mathematical Functions

31

A function is just a mapping from inputs to outputs:

x f1(x)
1 4
2 13
3 12
4 1
5 7

x f2(x)
1 1
2 2
3 3
4 4
5 5

x f3(x)
1 12
2 3
3 7
4 8
5 10

..

.

f
1

f
2

f
3

Which function is not random?

Thinking About Mathematical Functions

32

A function is just a mapping from inputs to outputs:

What is random is the way we pick a function

x f1(x)
1 4
2 13
3 12
4 1
5 7

x f2(x)
1 1
2 2
3 3
4 4
5 5

x f3(x)
1 12
2 3
3 7
4 8
5 10

..

.

f
1

f
2

f
3

Participation Question

33

Consider all functions of the form F : X -> Y

How many possible choices of F are there?

A. |X| * |Y|

B. |X|!

C. |Y||X|

D. |X||Y|

X
Y

F(·)

Q: How many functions?

34

● X = {0, 1, 2} (Domain)
● Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (Range)

103 = 1000 possible functions

Encryption with Functions

35

• Alice chooses f: {0,1}b → {0,1}b at
random from all possible
functions from {0,1}b to {0,1}b

• Alice gives Bob the inverse, f-1

• Given message m ∈ {0,1}b:
– Alice sends f(m) to Bob
– Bob decrypts using f-1

Participation Question
Is this a correct cipher?

A. Yes
B. No
C. I’m not sure

Correctness

Permutations: Definition

36

X
X

F(·)

● f: X -> X
● A permutation:

○ Is a function that maps (->)
every element of its domain to
one element of its range

○ Ever element in the range is
mapped to by exactly one
element of the domain

● In math terms: f is one-to-one
○ ∀x1, x2. f(x1) = f(x2) ⇔ x1 = x2

● Colloquially, f is a shuffling of X

Participation Question

37

XX

F(·)

Consider all permutations of the form F : X -> X

How many possible choices of F are there?

A. 2 * |X|

B. |X|2

C. |X|! ≅ (|x|/e)|X|

D. |X||X|

Better Encryption Scheme?

38

Participation Question
Is this a correct cipher?
 A. Yes
 B. No
 C. I’m not sure

Good cipher?

• Alice chooses f: {0,1}b -> {0,1}b

at random from all possible permutations from
{0,1}b to {0,1}b

• Alice gives Bob the inverse, f-1

• Given message m ∈ {0,1}b:

– Alice sends f(m) to Bob

– Bob decrypts using f-1

Better Encryption Scheme?

39

• Alice chooses f: {0,1}b -> {0,1}b

at random from all possible permutations from
{0,1}b to {0,1}b

• Alice gives Bob the inverse, f-1

• Given message m ∈ {0,1}b:

– Alice sends f(m) to Bob

– Bob decrypts using f-1

Did we bypass “bad news” theorem?

No! Writing down f requires 2b entries,
each of which is b bits 🡺 b*2b bits in
the ”key” >> Messages are only b bits.

We’d be much better off just choosing
a one-time pad

Computational security

40

The system can be practically (not perfectly) indecipherable

• Security is only preserved against efficient adversaries running in polynomial time and space, with access to
randomness

• Adversaries can succeed with a very small probability (small enough that it is essentially impossible)

– Ex: Probability of guessing a large randomly chosen value

“A scheme is secure if every Probabilistic Polynomial Time (PPT) adversary succeeds in breaking the scheme with
only negligible probability”

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

