MY NEW L ANGUAGE. 15 GREAT; BUT IT
HAS A REL QUIRKS REGARDING TYPE:

AlaAegn #11 -
COntrOI Flow (2/o> FOUNDATIONS
Integrity s G

SOFTWARE
(6] » [{,2,3]}2

[71 > [1,2“,5&4"-]
EBvikd kal KatrodioTplako > TRUE

,) > 2/(2 (3/2+'/2))
[MavemmoTAuio ABnvwy NaN.000000000000013

> NaN.000000000000013 SYSTEMS CRYPTO
| > RANGEC" 9

Eicaywyn otnv AcpdaAcia bal> +2

1> 2+2

141> RANGE(,S) HUMANS

Oavaong Auyepivog 15> FLOOR(05)

https://xkcd.com/1537/

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (some slides from Dan
Boneh @ Stanford!)

https://users.ece.cmu.edu/~dbrumley/

AVOKOIVWOEIC / AIEUKPIVIOEIC

e Apa yiaTi Oev UTTOPW VA TTAPW root access OTOV UTTOAOYIOTH HOU TPEXOVTAG
setresuid(0, 0, 0) o idIOg;

e YTTapxouv GAAeC puéBodol yia access control enforcement;

Tnv lNponyoupuevn Popd

e Reference Monitors
e "Gold" (Au) Standard: Authentication + Authorization + Audit
e Authorization Mechanisms / Access Control

o Access Control Lists (ACLs) and Capabilities (CAP)

o Discretionary Access Control (DAC)

o Role-Based Access Control (RBAC)

e CFG and call graph definitions
e Insensitive and sensitive
program analysis types
o Soundness / Unsoundness

e Type safety

Our Security
Journey So Far

Threat Modeling
and Security
Fundamentals

you're trying to do.

Trusted

Computing Base
Security needs to be
rooted in something
assumed. We try to
limit that to a fixed,
known set.

Get a handle on what

Security Journey

Program Exec

Let's understand software
at a basic execution level.

Defenses

Compile-time and OS
defenses.

Access Control

How to say who is who,
who can do what, and
check what they did.

Memory Safety Defenses

Control flow integrity, and by way
of that, introduction to some
program analysis terms.

Software Security Technigues

Different options at different stages of
development lifecycle

Today: Types

Today: Control Flow Integrity

Language

Architecture

Static Analysis &
Verification

Dynamic
Analysis

5‘,

Run-time
enforcement

~

Design

A/

Develop

A/

Check

A/

Test

A/

Release

So far: Ad-hoc methods

‘ Control Flow Hijacks ‘

Attack

[1
Buffer Format String

o
Overflows || Vulnerabilities

Computatioi

DEP/NX
More z
Buffer

Overflows
Return-

Oriented
Programn

I

>tr Subterfuge |

All attacks rely on

hijacking control!

http://propercourse.blogspot.com/2010/05/i-believe-in-duct-tape.html

Adversary Model Matters!

Cowan et al., USENIX Security 1998

StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks

"Programs compiled with StackGuard are safe from
buffer overflow attack, regardless of
the software engineering quality of the program.”

Hmm. Live and learn.

What we missed was a formal model of security.

Motivating Example: Control Flow Integrity

* protects against powerful adversary

— with full control over entire|[data memory

e widely-applicable

— language-neutral; requires binary only

e provably-correct & trustworthy

— formal semantics: small verifier

e efficient

— hmm... 0-45% in experiments; average 16%

10

Intro to
Program Analysis

Intelligence means the ability to question statements

Proof? That'’s just an if-then
statement.
* What is the “if” (assumptions).

* What is the implication of the
“then”? Is it trivial or not?

* What are the requirements to
make the proof? Is it rejecting
good programs?

Let’s start by understanding program

analysis terms

12

We'll divide this into

three sections

1. Soundness and completeness
2. Control flow reasoning
3. Data flow reasoning (types)

13

Two types of programs in
this world

All programs

Ok Programs

Buggy programs

14

Defining buggy and ok

There is a catch-22. We need to define buggy and ok, but
that requires a level of formalism we don't have.

We'll resolve this with examples and pseudo-logical
statements

15

“If the program p is bad if it raises a unix signal”
Vp.3i. (run(p,i) = signal) = bad(p)

“Only in-bounds array accesses are allowed”
V p.Vi.isPointer(p) A pointsTo(p,mem,l) A,i < | - ok(p|l]))

“unprivileged users should not access privileged resources”
Y u.V r.unprivileged(u) A access(r, privilged) — deny(u,r)

16

An analysis labels a program p
as either ok or buggy.

Please differentiate between:

* What the program actually
does for all inputs

* What the analysis says
about the program

All program s

Ok Programs

Buggy programs

17

Analysis Sound/Complete
Tradeoff

Sound: If the analysis says X is true, then X
really is true.
* le, betterto be quiet than tell a lie.

« Trivial example: never say anything is true.

Complete: If X is true, the analysis says X

Complete: Say everything true
* le., better to say all things than miss a true fact

* Say everything True things (in orange)

Sound: Never say anything untrue

006

Extremes: can you provide examples of complete / sound analyses?

Sound ok analysis:
analysis(p) = ok,
then p is ok

(Notice the under-approximation)

All program s

Ok Programs

Buggy programs

Programs labeled ok by sound

ok analysis

19

Analysis can also be unsound

All programs

Unsound ok analysis:

analysis(p) = ok, but
p is not ok

Ok Programs

Buggy programs

This is an
unsound
result

Programs labeled ok by the analysis

20

Complete ok analysis:
If p is ok, then analysis(p)
= ok

All programs

Ok Programs

Buggy programs

This is an
unsound
result

Programs labeled ok by the analysis

21

Soundness is an if-then
statement, so we can also talk
about sound buggy analysis.

Sound buggy analysis:
analysis(p) = buggy, then

p is buggy

All programs

Ok Programs

Buggy programs

. Programs labeled buggy by sound

buggy analysis

22

And complete buggy analysis

Complete buggy
analysis:

If p is buggy, then
analysis(p) = buggy

All programs

Ok Programs

Buggy programs

Programs labeled ok by the analysis

23

Halting Problem

Bad News?

Turing (1936): The halting problem is the
problem of determining, from a

description of an arbitrary computer
program and an input, whether the
program will finish running, or continue to

run forever. The halting problem is
undecidable.

Informal Statement of the Theory

Rice Theorem There is no sound and complete analysis

for any interesting (i.e., non-trivial)

The Real Bad property for programs in Turing-complete

languages.

News

Program Analysis: Making the Impossible, Possible

Control Flow
Analysis

Basic Block

Defn Basic Block: _
A consecutive sequence of instructions / code such l. x =y +z2
2.z =t + 1
that
« theinstruction in each position always executes 3. X =y + z - 3 static
. : » _ : basic blocks
before (dominates) all those in later positions, 4. z =t + 1
5. jmp 1
and Jmp
* no outside instruction can execute between 6. Jmp 3 _

two instructions in the sequence

Note: dynamic analysis sometimes says execution is “straight

(no jump targets except at the beginning,
no jumps except at the end)

“basic block” to mean no control flow change

during an execution. Here we mean statically.

28

CFG Definition [Frances Allen - Turing Award 2000]

Defn Control Flow Graph:

A graph where

— each vertex bbl. is a (static) basic block, and

— there is an edge (bb, bb/ if there may be a

transfer of control from block bb/. to block bbj.

Historically, the scope of a "CFG” is limited to

a function or procedure, i.e,

intra-procedural.

bbl:
while (e®)

true

_—

bb2:
if (el)

true false

bb3: bb4 :
stmtsl stmts2

bb5:
if (e2)

true

bb6:
stmts3

T~
bb7:

stmts4

fall through

29

Call Graph
Defn Call Graph:

Nodes are functions. There is an edge (v, vj) it function v, calls function v

void orange () wvoid red(int x) void green/()
{ { {

1. red(1l); green () ; green() ;
2. red(2); red () ;

3. green() ; } }

}

orange

Note how different calls to red are not distinguished!
This is a source of imprecision. (More Later.)

30

Analysis-Precision
Tradeoffs

Any static analysis chooses between:

Intra vs Inter-procedural
Context (calling context) sensitive vs. insensitive
Flow (CFG control flow) sensitive vs. insensitive

Path (execution path flow) sensitive vs. insensitive

Trade off space examples

A

Research static analysis .
Inter-procedural, 3 calling contexts
sensitive, path-insensitive

Optimization
‘ Intra-procedural, context & flow insensitive,
flow sensitive

Analysis time & space cost

Type check

Context, flow, and path insensitive

Analysis precision

31

Context Sensitive Example

a = id(4); > void id(int z) Context-sensitive
- 1 return z; } (color denotes
id(5);] matching call/ret)

-
Context sensitive can tell which call returns to which location
E.g., replace id(4) with value 4, id(5) with value 5.

b

Context Insensitive Example

a = 1d(4); void id(int z) Context-insensitive
<= - _ .
/> { return z; } (note merging)
b = id(5); “:

— - —
f—

Context insensitive will say both calls can return to both locations
E.g., id()] {4,5}, so cannot safely optimize

32

Intuition: Complete sensitivity is impossible

Analysis complexity comes from cloning results at each call.

void orange() void red(int x)
{ {

1. red(1); 1. green();

2. red(2); e

3. green(); }

}

[orange J

void green()

{

}

orange line 1 red line 1

Y

orange line 2

red line 1

green

1. green();
2. red();

green line 1

/N

/N)
green line 2 *_red0

green line 2

Hmm. What do\
we do at red.
Do we keep
cloning?

J

33

Quiz Question

Consider the following definitions:
All possible statements: {a, b, c, d, e, f}
The true statements: {a, b, c}
Statements the analysis says are true: {a, b, c, d}

Which of the following is TRUE?

ne analysis is sound and complete

ne analysis is sound, but not complete

A
B
C. The analysis is complete, but not sound
D

ne analysis is trivially complete

Type Safety
Analysis

Types

* Atype is a specification of data or code in a program

* Examples from C:
— Basic types
* int, char, float, double, void

* int x; ---variable x will store an integer

— Function types
* int -> int

 int factorial (int);
factorial is a function that takes
an integer as an argument and
returns an integer:

36

Type safety is a little “ok” proof

« Type safety means the running program is guaranteed to
manipulate values in a way that is compatible with its type

* Type safety checks are used to reject buggy programs:
— Use strings as integers
— Use integers as pointers
— Cause null-pointer exceptions
— Cause array overflows

— Leak secret information

Type safety is an ok analysis

Type safety is proving just two theorems: progress and preservation

* Preservation: If the program is well-typed at step i, and then takes a

step, it will be well-typed at step i+
* Progress: If the program is well-typed at step i, it has either finished

(safely) or it can take another step.

38

Dynamic Type Safety

Dynamic type safety: Preservation and progress are checked at runtime.
* Preservation: ensures that operations on values are type-safe as

they occur.
* Progress: as long as the runtime type checks pass, the program can

continue to execute and make progress.

Example: Python. Python checks that types don’t change during
execution, and will raise an exception if not. (Exceptions are

well-typed.)

39

Static type safety

Static type safety: Preservation and progress are checked at compile

time.

* Preservation: Guaranteed by the compiler, typically with a flow and
context-insensitive analysis.

* Progress: as long as the compiler verifies the code, the program wiill
execute to completion.

Example: Rust.

40

Java: Mix of both

Java will add dynamic bounds checks to arrays where it cannot prove
them statically safe.

41

Absent, Weak, and Strong Static Typing

Untyped languages don't have types (One type: Unityped). They are trivially type safe.

— E.g., Bash, Perl, Ruby, ...
— Usually interpreted; difficult to compile without types

— Program safety is programmer's responsibility: programs difficult to debug (really!)

Weakly typed languages use types only for compilation; no type-safety

— E.g., C C++ etc
— Often allow unsafe casts, e.g., char[8] to char[] and int to char*

— Program safety is programmer's responsibility: buffer overflows and segmentation faults are common in programs

Strongly typed languages use types for compilation and guarantee type-safety

— E.g., BASIC, Pascal, Cyclone, Haskell, SML, Java, etc.
— No unsafe casts, e.g., an integer cannot be cast to a pointer, an array of length 8 is not an unbounded array, etc.

— Safety is guaranteed but believed unsuitable for some low-level programs (debatable)

42

Buffer Overflow with scanf in C

This program is well-typed
according to gcc, but can
crash at runtime.

C is not type-safe

vold readstring(char strl[])

4 B |

User could provide input char buf[8];
longer than 7 bytes, causing

W o

a buffer overflow scanf (“$s”,str) ;
char [unlimited] != char[8] /
\

Types simplify compilation

« Types are necessary to compile source code

What is the binary representation of variables?

* int x; --- xis 4 bytes

-

* char x; ---xis1byte

* int arr[8]; ---arris32bytes

How to compute in assembly?

-

Types are used to compile code,
but (usually) don’t exist in the
compiler’s output

\

J

* int x; int y; x + y [] addrir2
e float x; float y; x + y[lfaddrir2

+ Difference is based on types

44

Type checking is a type of verification

no pun intended on the two uses of type

» Sufficiently rich type systems enable verification

— Type-checking == Proof checking
» Example: Dependent types

-

x:int { x > 0 }
y:int { y % 2 ==0 }

_

Most type systems
are not this rich
[1 Better automation

\

J

method duplicate(input:array<int>{input!=null})

returns (output:array<int>{array_equal(input,output)})

45

From Safety to Security

Type safety in programming languages, despite the name,
does not mean security safety.

But types can be used to specity and enforce security
properties

Classic example: Information flow control

Possible policy: Non-interference

— Secret inputs cannot “interfere” with public outputs

46

Defining Security via Non-Interference

H: Classified

L: Unclassified

Security levels:

H-in’ H-out’

| -in Program

No information flows from high inputs to low outputs

47

it x

1 then

Example

X y NI
H H Yes
L L Yes
H L No
L H Yes

48

Specification and Enforcement

* Approach
— Use a typed programming language
— Types represent security levels
e H L ..
— Sub-typing captures partial order among security levels
e L<H
— Type system captures allowed information flows

— Soundness theorem

* Well-typed programs satisfy non-interference

49

Summary of Types

Types are specifications of data and code
Compiler may check well-typedness without executing the program

Existence of type specifications may imply program safety (type-safety)

Types can potentially specity deep program properties

Not all languages with types are type-safe
— E.g., Cis not type-safe

50

Control Flow
Integrity

Control-Flow Integrity: Principles, Implementation and Applications
by Abadi, Budiu, Erlingsson, and Ligatti

51

Control Flow Integrity

protects against powerful adversary

— with full control over entire data memory

widely-applicable
— language-neutral; support features; requires binary only

provably-correct & trustworthy

— formal semantics: small verifier

efficient

— hmm... 0-45% in experiments; average 16%

52

ADVERSARY CAN

Overwrite any data memory

at any time, including stack,
heap, data segments

prara

OHE=

[——]

ADVERSARY CANNOT

* Execute data (DEP enabled)
* Modify Code (text RO)

* Write to %rip

* Overwrite registers in

other contexts

ANALYSIS ASSUMES
* All code compiled w/ CFlI

(3 party libraries problem)

* Compiler CFG is accurate

(CFC both under and over approx.
control flow)

CFIl Overview

Invariant: Execution must follow a path in a
control flow graph (CFG) created ahead of run time.

||
“static”

High-level method:

build CFG statically, e.g., at compile time

instrument (rewrite) binary, e.g., at install time

— Add checks before each control transfer

verity CFl instrumentation at load time

— Make sure right checks are present and cannot be bypassed

perform checks at run time

— Crash/halt if checks are violated

Ah, the Caveat

CFl accuracy is limited by how
accurately we can statically
understand runtime semantics. It
will, after all, essentially be
enforcing statically determined
control flow.

It's important because the strong
theoretical model means we “just”
have to worry about
implementation.

Build CFG: Basic Blocks

bool 1t(int x, int y) {
return x < y;

) twice sort 1t
bool gt(int x, int y) { § é

return x > y; call sort call R ret
}
void sort(int w[], int len, é é

bool (*sorted)(int, int)) gt

(.. call sort ret

oid twice(int a[], int b[], int 1
?{/1 wice(i [1, i [1, int len) é ret

sort(a, len, 1t); ret

sort(b, len, gt);
}

Build CFG: Forward Edges

bool 1t(int x, int y) {
return x < y;

}

bool gt(int x, int y) {
return x > y;

}

void sort(int wll _dint len,

-230in 2s T int))

twice

S

call sort

S

call sort

- _complement
100000ed@: 55 pu %

N

100000ef1: eS8

-230

100000f04: e8 07 ff ff ff -249

<sort>

/]

sort

call

R

ret

1t

ret

ret

> direct calls

--------- > indirect calls

56

Build CFG: Forward Edges

bool 1t(int x, int y) {
return x < y;

}

bool gt(int x, int y) {
return x > y;

}

void sort(int w[], int len,
bool (*sorted)(int, int))

(...}

twice

S

call sort

S

call sort

sort:
100000e10: 55 pushqg %rbp

100000e59: ff do allg *%r‘aD

100000ec6: c3 ret

$

let

/]

sort

call

*
*
R ’
*

ret

1t

ret

x.gt

ret

> direct calls

--------- > indirect calls

57

Build CFG: Backward Edges

bool 1t(int x, int y) {
return x < y;

}

bool gt(int x, int y) {
return x > y;

}

void sort(int w[], int len,
bool (*sorted)(int, int))

(...}

void twice(int a[], int b[], int len)

{
sort(a, len, 1t);
sort(b, len, gt);
}

twice

S

call sort

/]

S

call sort

$

ret

sort

call

R

WA | AW

ret

1t

.{ret

Iret

--------- > indirect calls

> direct calls

58

Build CFG: Backward Edges

bool 1t(int x, int y) {
return x < y;

}

bool gt(int x, int y) {
return x > y;

}

void sort(int w[], int len,
bool (*sorted)(int, int))

(...}

void twice(int a[], int b[], int len)
{

sort(a, len, 1t);

sort(b, len, gt);

twice

call sort

S

call sort

S

ret

$

} r

_

Two possible
return sites due to
context insensitivity

J

1t

.{ret

Iret

> direct calls

--------- > indirect calls

59

Instrument Binary: Labels

bool 1t(int x, int y) { twice
return x < vy;

: $

call sort

bool gt(int x, int y) {
return x > y; 161 2 55

}

void sort(int w[], int len, call sort

bool (*sorted)(int, int))

SRR 1bl §55
id twi int , int b[], int 1

¥01 wice(int a[], in [], int len) rot
sort(a, len, 1t); . . .
Soptgb, len, gt%s 1. Label dynamic destinations

} — Insert a unique number at each

— Two destinations are equivalent if CFG contains
edges to each from the same source

1t
1bl§17

.{ret

> direct calls

--------- > indirect calls

60

InStrument Blnary Clgredicc;tedcallﬂ, R:

transfer control to R
only when R has label 17

bool 1t(int x, int y) { twice 1t
return x < y; 1bl ¢ 17
: $ $
bool gt(int x, int y) { call sort et
} return x > y; 1bl§55
void sort(int w[], int len, call sort
bool (*sorted)(int, int))
SRy, 1bl §55
?{/oid twice(int a[], int b[], int len) rot
sort(a, len, 1t); _ o predicated ret 23: transfer
sort(b, len, gt); 1. Label dynamic destinations \control to only label 23
} — Insert a unique number at each

— Two destinations are equivalent if CFG contains
edges to each from the same source

> direct calls

2. Add checks at each control transfer

--------- » indirect calls
61

Example of Instrumentation

Original code

Source Destination
Opcode bytes Instructions Opcode bytes Instructions
FF E1 jmp ecx ; computed jump 8B 44 24 04 mov eax, [espt4] ; dst

Instrumented code

B8 77 56 34 12
40

mov eax, 12345677h
inc eax

39 41 04 = A s
75 13 jne fJerror_label
FF E1 jmp [ecx

Jump to the destination only if
the tag is equal to “12345678"

we we we we we

load ID-1 3E OF 18 05 refetchnta ; label
add 1 for ID 78 B6 34 12 [12345678h] ; ID
compare w/dst €sp+4] ; dst

8B 44 24 04
1f ¥s Tadl ; 5
jump to label

Abuse an x86 assembly instruction to
insert “12345678" tag into the binary

62

Verify CFIl Instrumentation

* Jump targets (e.g. call 0x12345678)

— are all targets valid according to CFG?

 |IDs

— isthere an ID right after every entry point?
— does any ID appear in the binary by accident?

e |ID Checks

— is there a check before every control transfer?

— does each check respect the CFG?

63

Performance in 2005

Size: increase 8% avg

Time: increase 0-45%; 16% avg

— 1/0 latency helps hide overhead

CFI enforcement overhead

50% -

40% -

30% -

20% -

10% -

0%

45%
I I I 1
bzip2 crafty eon gcc gzip mcf parser twolf vortex vpr AVG

Fig. 6. Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.

64

Fast Forward to 2020

e CFlintroduced in CCS 2005

' VOID Foo{CALLBACK ROUTINE #Cb) {)
. i p)
* Many new developments since then e e
Cb(): | inserted CFG
— E.g., “Coarse-grained” CFl i L
* Deployments: - -

{ Foo (ValidCallback) ; J [Foo(0z41414141); J

— Forward edge
* gcc»>=4.9, llvm >=3.7, msvc >= 2015 & win >= 8.1

\ /
\/

IsValidrarget(validCallback) IsValidrarget(0xd1414141)
roturns 1Rl returns FALSE

— Backward edge

* Software implementations of shadow stack

ValidCallback is called Ox41414141 is NOT called

* Intel Control-flow Enforcement Technology (CET) Process cntisee smecuting | (NRESSRSELE Sttt
* MS Control Flow Guard

MS Control Flow Guard

How Can | Enable CFG?

In most cases, there's no need to change source code. All you have to do is add an option to your Visual Studio project,

and the compiler and linker will enable CFG.

The simplest method is to navigate to Project | Properties | Configuration Properties | C/C++ | Code Generation and

r/Back4Blood * 3 yr. ago
neoKushan

choose Yes (/guard:cf) for Control Flow Gui D &

B e

[PSA] Disable "Control Flow Guard" for better performance and to
reduce hitching with DX12

Configuration: | Active(Debug) v | Platf
So, like many people here | was having loads of performance issues with the game. | did the well-known fixes like
4 Configuration Properties A Enable String disabling razor software but | had this really annoying hitching that would occur every 10 or 20 seconds. The only fix |
found (until now) was switching to DX11 mode, but performance with DX11 was half that of DX12 and wasn't a fun
experience.

ConsoleApplication1 Property Pages

General Enable Minin
Debugging Enable C++ H

VC++ Directories Smaller Type As luck would have it, | noticed a similar (But worse) sort of stuttering in a different game so went looking for a
4 C/C+ f . : solution and that's when | stumbled upon this slightly obscure thing: Control flow guard.

N Basic Runtim
General Runtime Libri It's a security measure that's part of Windows 10, but it seems it has a drastically negative effect on some systems
Optimization with DX12. | tried disabling it and voila! My hitching on that other game was nearly entirely eliminated. | tried B4B and

Struct Memb the difference is insane. There's still the occasional frame drop but it's much better. Previously it would do a good 1/4

. Security Cheg second or 1/2 second hitch, now it just drops a couple of frames and carries on (which isn't a big deal when | can get
Code Generation C] a near locked 120FPS).

Preprocessor

Language :
9ua9 Enable Funct To disable control flow guard, search for "Exploit protection” in the search menu and it will be one of the top options.

Enable Paralld You can disable it system wide or on a per-application basis. For security reasons it might be better to only disable it

Enable Enha

Precompiled Heade
Output Files

Demisirn lanfnrmaabinm

prara

OHE=

[——]

ADVERSARY CAN ADVERSARY CANNOT

Overwrite any data memory * Execute data (DEP enabled)
at any time, including stack, * Modify Code (text RO)
heap, data segments * Write to %rip
* Overwrite registers in

other contexts

Assumptions are
often vulnerabilities
or limitations!

ANALYSIS ASSUMES
* All code compiled w/ CFlI

(3 party libraries problem)

* Compiler CFG is accurate

(CFC both under and over approx.
control flow)

CONFIRM: Evaluating Compatibility and Relevance of
Control-flow Integrity Protections for Modern Software

Xiaoyang Xu
University of Texas at Dallas University

Kevin W. Hamlen
University of Texas at Dallas

Abstract

CONFIRM (CONtrol-Flow Integrity Relevance Metrics) is a
new evaluation methadology and microbenchmarking suite
for assessing compatibility, applicability, and relevance of
control-fiow integrity (CF) protections for preserving the in-
tended semantics of software while protecting it from abuse.
Although CFI has become a mainstay of protecting certain
classes of software from code-reuse attacks, and continues
to be improved by ongoing rescarch, its ability to preserve
intended program functionalities (semantic transparency) of
diverse, mainstream software products has been under-studied
in the literature. This is in part because although CFI solu-
tions a in terms of perf d there
remains no standard regimen for assessing compatibility. Re-
searchers must often therefore resort to ancedotal assessments,
consisting of tests on homogeneous software collections with
limited variety (e.g.. GNU Coreutils), or on CPU benchmarks
(e.g., SPEC) whose limited code features are not representa-
tive of large, mainstream software products.

Reevaluation of CFT solutions using CONFIRM reveals
that there remain significant unsolved challenges in sccuring
many large classes of software products with CFI, includ-
ing software for marketdominant OSes (e.g., Windows) and
code employing certain ubiquitous coding idioms (e.g., event-
driven callbacks and cxceptions). An estimated 47% of CFI-
relevant code features with high compatibility impact remain
incompletely supported by existing CF1 algorithms, or reccive
weakened controls that leave prevalent threats unaddressed
(e.g., return-oriented programming attacks). Discussion of
these apen problems highlights issucs that future rescarch
must address to bridge these important gaps between CFI
theory and practice.

1 Introduction

Control-flow integrity (CFI) [1] (supported by vtable protec-
tion [29] and/or software fault isolation [73]), has emerged as

“These sutbors contributed equally to this work.

Masoud Ghaffarinia*
of Texas at Dallas

Wenhao Wang"
University of Texas at Dallas

Zhigiang Lin
Okhio State University

one of the strongest known defenses against modern control-
flow hijacking attacks, including retur-oriented program-
ming (ROP) (60) and other code-reuse attacks. These attacks
trigger dataflow vulnerabilities (e.g., buffer overflows) to ma-
nipulate contro] data (e.g., return addresses) to hijack vietim
software, By restricting program exceution to a set of legiti-
mate control-flow targets at runtime, CF1 can mitigate many
of these threats.

Tnspired by the initial CFT work [1], there has been prolific
new research on CEl in recent years, mainly aimed at improv-
ing performance, enforcing richer policies, obtaining higher
assurance of policy-compliance, and protecting against more
subtle and sophisticated attacks. For example, between 2015
2018 over 25 new CFI algorithms appeared in the top four
applied sccurity conferences alone. These new frameworks
are generally evaluated and compared in terms of performance
and security. Performance overhead is commonly evaluated
in terms of the CPU benchmark suites (e.g.. SPEC), and se-
curity is often assessed using the RIPE test suite [80] or with
manually crafted proof-of-concept attacks (c.g., COOP [62])
For example, a recent survey systematically compared various
CFI mechanisms against these metrics for precision, security,
and performance (13],

While this atiention to performance and sccurity has stimu-
lated rapid gains in the ability of CFI solutions to efficiently
enforce powerful, precise security policies, less attention
has been devoted to systematically examining which gen-
eral classes of software can receive CFT protection without
suffering compatibility problems. Historically, CFI rescarch
has struggled to bridge the gap between theory and practice
(cf., [84)) because code hardening transformations inevitably
run at least some risk of corrupting desired, policy-permitted
program functionalities. For example, introspective programs
that read their own code bytes at runtime (c.g., many VMs,
JIT compilers, hot-patchers, and dynamic linkers) can break
after their code bytes have been modificd o relocated by CFI

Compatibility issues of this sort have dangerous security
ramifications if they prevent protection of software necded in
mission-critical contexts, or if the protections must be weak-

ConFIRM: Evaluating Compatibility and Relevance
of Control-flow Integrity Protections for
Modern Software . USENIX 2019

Reevaluation of CFI solutions using CONFIRM reveals
that there remain significant unsolved challenges in securing
many large classes of software products with CFI, includ-
ing software for market-dominant OSes (e.g., Windows) and
code employing certain ubiquitous coding idioms (e.g., event-
driven callbacks and exceptions). An estimated 47% of CFI-
relevant code features with high compatibility impact remain

incompletely supported by existing CFI algorithms, or receive

weakened controls that leave prevalent threats unaddressed
(e.g., return-oriented programming attacks). Discussion of
these open problems highlights issues that future research
must address to bridge these important gaps between CFI
theory and practice.

68

Summary: CFI

* Provides a strong theoretic guarantee against a strong
attacker model

* Relies on the precision of static analysis to insert runtime
checks

* Theoretic guarantees are assumptions, and not easy to
satisty with fully featured real systems.

69

Key Takeaways!

* Many technigques exist to
create more secure
software

 Understand the tradeoffs

Language

Architecture

Static Analysis &
Verification

Dynamic
Analysis

5‘,

Run-time
enforcement

~

Design

A/

Develop

A/

Check

A/

Test

A/

Release

70

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

