
Θανάσης Αυγερινός

Εθνικό και Καποδιστριακό
Πανεπιστήμιο Αθηνών

Εισαγωγή στην Ασφάλεια

SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Διάλεξη #11 -
Control Flow
Integrity

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class (some slides from Dan
Boneh @ Stanford!)

https://xkcd.com/1537/

https://users.ece.cmu.edu/~dbrumley/

Ανακοινώσεις / Διευκρινίσεις

2

● Άρα γιατί δεν μπορώ να πάρω root access στον υπολογιστή μου τρέχοντας

setresuid(0, 0, 0) ο ίδιος;

● Υπάρχουν άλλες μέθοδοι για access control enforcement;

Την Προηγούμενη Φορά

3

● Reference Monitors

● "Gold" (Au) Standard: Authentication + Authorization + Audit

● Authorization Mechanisms / Access Control

○ Access Control Lists (ACLs) and Capabilities (CAP)

○ Discretionary Access Control (DAC)

○ Role-Based Access Control (RBAC)

Σήμερα

4

● CFG and call graph definitions

● Insensitive and sensitive

program analysis types

○ Soundness / Unsoundness

● Type safety

5

Our Security
Journey So Far

Security JourneyThreat Modeling
and Security
Fundamentals
Get a handle on what
you’re trying to do.

Access Control
How to say who is who,
who can do what, and
check what they did.Program Exec

Let’s understand software
at a basic execution level.

Trusted
Computing Base
Security needs to be
rooted in something
assumed. We try to
limit that to a fixed,
known set.

Defenses
Compile-time and OS
defenses.

Memory Safety Defenses
Control flow integrity, and by way
of that, introduction to some
program analysis terms.

Different options at different stages of
development lifecycle

Design

Develop

Test

ReleaseRun-time
enforcement

Dynamic
Analysis

Architecture

Language

7

CheckStatic Analysis &
Verification

Today: Control Flow Integrity

Today: Types

Software Security Techniques

8

All attacks rely on
hijacking control!

http://propercourse.blogspot.com/2010/05/i-believe-in-duct-tape.html

So far: Ad-hoc methods

Adversary Model Matters!

Cowan et al., USENIX Security 1998

StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks

“Programs compiled with StackGuard are safe from
buffer overflow attack, regardless of

the software engineering quality of the program.”

9

Hmm. Live and learn.
What we missed was a formal model of security.

10

• protects against powerful adversary

– with full control over entire data memory

• widely-applicable

– language-neutral; requires binary only

• provably-correct & trustworthy

– formal semantics; small verifier

• efficient

– hmm… 0-45% in experiments; average 16%

Motivating Example: Control Flow Integrity

11

Intro to
Program Analysis

12

Intelligence means the ability to question statements

Proof? That’s just an if-then
statement.
• What is the “if” (assumptions).

• What is the implication of the
“then”? Is it trivial or not?

• What are the requirements to
make the proof? Is it rejecting
good programs?

Let’s start by understanding program
analysis terms

13

We’ll divide this into
three sections

1. Soundness and completeness

2. Control flow reasoning

3. Data flow reasoning (types)

14

All programs

Ok Programs Buggy programs
Two types of programs in

this world

There is a catch-22. We need to define buggy and ok, but
that requires a level of formalism we don’t have.

We’ll resolve this with examples and pseudo-logical
statements

15

Defining buggy and ok

16

Examples

17

All program s

Ok Programs Buggy programs

An analysis labels a program p
as either ok or buggy.

Please differentiate between:
• What the program actually

does for all inputs
• What the analysis says

about the program

18

Sound: If the analysis says X is true, then X
really is true.

• I.e., better to be quiet than tell a lie.

• Trivial example: never say anything is true.

Complete: If X is true, the analysis says X
• I.e., better to say all things than miss a true fact

• Say everything

Analysis Sound/Complete
Tradeoff

Complete: Say everything true

True things (in orange)

Sound: Never say anything untrue

Extremes: can you provide examples of complete / sound analyses?

19

All program s

Ok Programs Buggy programs

Sound ok analysis:
analysis(p) = ok,
then p is ok

Programs labeled ok by sound
ok analysis

(Notice the under-approximation)

20

All programs

Ok Programs Buggy programsAnalysis can also be unsound

Unsound ok analysis:
analysis(p) = ok, but
p is not ok

Programs labeled ok by the analysis

This is an
unsound
result

21

All programs

Ok Programs Buggy programs

Complete ok analysis:
If p is ok, then analysis(p)
= ok

Programs labeled ok by the analysis

This is an
unsound
result

22

All programs

Ok Programs Buggy programs

Sound buggy analysis:
analysis(p) = buggy, then
p is buggy

Programs labeled buggy by sound
buggy analysis

Soundness is an if-then
statement, so we can also talk
about sound buggy analysis.

23

All programs

Ok Programs Buggy programs

Complete buggy
analysis:
If p is buggy, then
analysis(p) = buggy

Programs labeled ok by the analysis

And complete buggy analysis

Halting Problem

Bad News?
Turing (1936): The halting problem is the

problem of determining, from a

description of an arbitrary computer

program and an input, whether the

program will finish running, or continue to

run forever. The halting problem is

undecidable.

Rice Theorem

The Real Bad

News

Informal Statement of the Theory

There is no sound and complete analysis

for any interesting (i.e., non-trivial)

property for programs in Turing-complete

languages.

Program Analysis: Making the Impossible, Possible

27

Control Flow
Analysis

Basic Block
Defn Basic Block:

A consecutive sequence of instructions / code such

that

• the instruction in each position always executes

before (dominates) all those in later positions,

and

• no outside instruction can execute between

two instructions in the sequence

Note: dynamic analysis sometimes says

“basic block” to mean no control flow change

during an execution. Here we mean statically.

28

execution is “straight”
(no jump targets except at the beginning,

no jumps except at the end)

1. x = y + z
2. z = t + i

3. x = y + z
4. z = t + i
5. jmp 1

6. jmp 3

3 static
basic blocks

CFG Definition [Frances Allen - Turing Award 2006]

Defn Control Flow Graph:

A graph where

– each vertex bb
i
 is a (static) basic block, and

– there is an edge (bb
i
, bb

j
) if there may be a

transfer of control from block bb
i
 to block bb

j
.

Historically, the scope of a “CFG” is limited to

a function or procedure, i.e.,

intra-procedural.

29

bb2:
if (e1)

bb5:
if (e2)

bb6:
stmts3

bb7:
stmts4

bb1:
while (e0)

bb3:
stmts1

bb4:
stmts2

true

fall through

true

true

false

Call Graph
Defn Call Graph:
Nodes are functions. There is an edge (v

i
, v

j
) if function v

i
 calls function v

j

30

void orange()
{
1. red(1);
2. red(2);
3. green();
}

void red(int x)
{
green();
...
}

void green()
{
 green();
 red();
}

orange red green

Note how different calls to red are not distinguished!
This is a source of imprecision. (More Later.)

31

Any static analysis chooses between:

• Intra vs Inter-procedural

• Context (calling context) sensitive vs. insensitive

• Flow (CFG control flow) sensitive vs. insensitive

• Path (execution path flow) sensitive vs. insensitive

Analysis-Precision
Tradeoffs

Analysis precision

A
na

ly
si

s
tim

e
&

 s
p

ac
e

co
st

Optimization
Intra-procedural, context & flow insensitive,
flow sensitive

Type check
Context, flow, and path insensitive

Research static analysis
Inter-procedural, 3 calling contexts
sensitive, path-insensitive

Trade off space examples

Context Sensitive Example
a = id(4);

b = id(5);

32

void id(int z)
{ return z; }

Context-sensitive
(color denotes
matching call/ret)

a = id(4);

b = id(5);

void id(int z)
{ return z; }

Context-insensitive
(note merging)

Context sensitive can tell which call returns to which location
E.g., replace id(4) with value 4, id(5) with value 5.

Context insensitive will say both calls can return to both locations
E.g., id()🡪 {4,5}, so cannot safely optimize

Context Insensitive Example

33

Intuition: Complete sensitivity is impossible
Analysis complexity comes from cloning results at each call.

void orange()
{
1. red(1);
2. red(2);
3. green();
}

void red(int x)
{
 1. green();
 ...
}

void green()
{
 1. green();
 2. red();
}

orange

red() green

red() green

orange line 1
red()

red()
orange line 2

red line 1

red line 1

green line 1

green line 2

green line 2

Hmm. What do
we do at red.
Do we keep
cloning?

Quiz Question

Consider the following definitions:
 All possible statements: {a, b, c, d, e, f}
 The true statements: {a, b, c}
 Statements the analysis says are true: {a, b, c, d}

Which of the following is TRUE?

A. The analysis is sound and complete

B. The analysis is sound, but not complete

C. The analysis is complete, but not sound

D. The analysis is trivially complete
34

35

Type Safety
Analysis

36

Types

• A type is a specification of data or code in a program

• Examples from C:

– Basic types

• int, char, float, double, void

• int x; --- variable x will store an integer

– Function types

• int -> int

• int factorial(int);
factorial is a function that takes
an integer as an argument and
returns an integer:

37

Type safety is a little “ok” proof

• Type safety means the running program is guaranteed to
manipulate values in a way that is compatible with its type

• Type safety checks are used to reject buggy programs:

– Use strings as integers

– Use integers as pointers

– Cause null-pointer exceptions

– Cause array overflows

– Leak secret information

– …

38

Type safety is an ok analysis

Type safety is proving just two theorems: progress and preservation

• Preservation: If the program is well-typed at step i, and then takes a

step, it will be well-typed at step i+1

• Progress: If the program is well-typed at step i, it has either finished

(safely) or it can take another step.

39

Dynamic type safety: Preservation and progress are checked at runtime.

• Preservation: ensures that operations on values are type-safe as
they occur.

• Progress: as long as the runtime type checks pass, the program can

continue to execute and make progress.

Example: Python. Python checks that types don’t change during

execution, and will raise an exception if not. (Exceptions are

well-typed.)

Dynamic Type Safety

40

Static type safety: Preservation and progress are checked at compile

time.

• Preservation: Guaranteed by the compiler, typically with a flow and
context-insensitive analysis.

• Progress: as long as the compiler verifies the code, the program will

execute to completion.

Example: Rust.

Static type safety

41

Java will add dynamic bounds checks to arrays where it cannot prove

them statically safe.

Java: Mix of both

42

Absent, Weak, and Strong Static Typing

• Untyped languages don't have types (One type: Unityped). They are trivially type safe.

– E.g., Bash, Perl, Ruby, …

– Usually interpreted; difficult to compile without types

– Program safety is programmer's responsibility: programs difficult to debug (really!)

• Weakly typed languages use types only for compilation; no type-safety

– E.g., C, C++, etc.

– Often allow unsafe casts, e.g., char[8] to char[] and int to char*

– Program safety is programmer's responsibility: buffer overflows and segmentation faults are common in programs

• Strongly typed languages use types for compilation and guarantee type-safety

– E.g., BASIC, Pascal, Cyclone, Haskell, SML, Java, etc.

– No unsafe casts, e.g., an integer cannot be cast to a pointer, an array of length 8 is not an unbounded array, etc.

– Safety is guaranteed but believed unsuitable for some low-level programs (debatable)

43

Buffer Overflow with scanf in C

void readstring(char str[])

{

 char buf[8];

 scanf(“%s”,str);

}

This program is well-typed
according to gcc, but can
crash at runtime.

C is not type-safe

User could provide input
longer than 7 bytes, causing
a buffer overflow
char [unlimited] != char[8]

44

Types simplify compilation

• Types are necessary to compile source code

– What is the binary representation of variables?

• int x; --- x is 4 bytes

• char x; --- x is 1 byte

• int arr[8]; --- arr is 32 bytes

– How to compute in assembly?

• int x; int y; x + y 🡺 add r1,r2

• float x; float y; x + y 🡺 fadd r1,r2

• Difference is based on types

Types are used to compile code,
but (usually) don’t exist in the

compiler’s output

45

Type checking is a type of verification
no pun intended on the two uses of type

• Sufficiently rich type systems enable verification

– Type-checking == Proof checking

• Example: Dependent types

method duplicate(input:array<int>{input!=null})
 returns (output:array<int>{array_equal(input,output)})

x:int { x > 0 }

y:int { y % 2 == 0 }

Most type systems
 are not this rich

🡺 Better automation

From Safety to Security

• Type safety in programming languages, despite the name,
does not mean security safety.

• But types can be used to specify and enforce security
properties

• Classic example: Information flow control

• Possible policy: Non-interference

– Secret inputs cannot “interfere” with public outputs

46

Defining Security via Non-Interference

47

Program

H-in

L-in

H-out

L-out

H-in’ H-out’

No information flows from high inputs to low outputs

Security levels:

H: Classified

L: Unclassified

Example

if x = 1 then

 y:=1

else

 y:=0

48

NoLH

YesHL

YesLL

YesHH

NIyx

Specification and Enforcement
• Approach

– Use a typed programming language

– Types represent security levels

• H, L, …

– Sub-typing captures partial order among security levels

• L ≤ H

– Type system captures allowed information flows

– Soundness theorem

• Well-typed programs satisfy non-interference

49

Summary of Types

• Types are specifications of data and code

• Compiler may check well-typedness without executing the program

• Existence of type specifications may imply program safety (type-safety)

• Types can potentially specify deep program properties

• Not all languages with types are type-safe

– E.g., C is not type-safe

50

51

Control Flow
Integrity

Control-Flow Integrity: Principles, Implementation and Applications
by Abadi, Budiu, Erlingsson, and Ligatti

52

Control Flow Integrity

• protects against powerful adversary
– with full control over entire data memory

• widely-applicable
– language-neutral; support features; requires binary only

• provably-correct & trustworthy
– formal semantics; small verifier

• efficient
– hmm… 0-45% in experiments; average 16%

ADVERSARY CAN

Overwrite any data memory

at any time, including stack,

heap, data segments

ADVERSARY CANNOT

• Execute data (DEP enabled)

• Modify Code (.text RO)

• Write to %rip

• Overwrite registers in

other contexts

ANALYSIS ASSUMES

• All code compiled w/ CFI

 (3rd party libraries problem)

• Compiler CFG is accurate
(CFG both under and over approx.

control flow)

CFI Overview

Invariant: Execution must follow a path in a
control flow graph (CFG) created ahead of run time.

High-level method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time
– Add checks before each control transfer

• verify CFI instrumentation at load time
– Make sure right checks are present and cannot be bypassed

• perform checks at run time
– Crash/halt if checks are violated

54

“static” CFI accuracy is limited by how
accurately we can statically
understand runtime semantics. It
will, after all, essentially be
enforcing statically determined
control flow.

It’s important because the strong
theoretical model means we “just”
have to worry about
implementation.

Ah, the Caveat

ret 23

ret 23

Build CFG: Basic Blocks

55

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

call sort

call sort

ret

ret 55

call 17,R

twice sort lt

gt

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

call 17,R ret 23

ret 23

Build CFG: Forward Edges

56

call sort

call sort

ret

ret 55

twice sort lt

gt

direct calls

indirect calls

twice:
100000ed0: 55 pushq %rbp
...
100000ef1: e8 1a ff ff ff callq -230 <sort>
...
100000f04: e8 07 ff ff ff callq -249 <sort>

-230 in 2s
complement

call 17,R ret 23

ret 23

Build CFG: Forward Edges

57

call sort

call sort

ret

ret 55

twice sort lt

gt

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

sort:
100000e10: 55 pushq %rbp
...
100000e59: ff d0 callq *%rax
...
100000ec6: c3 ret direct calls

indirect calls

call 17,R ret 23

ret 23

Build CFG: Backward Edges

58

call sort

call sort

ret

ret 55

twice sort lt

gt

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

direct calls

indirect calls

call 17,R ret 23

ret 23

Build CFG: Backward Edges

59

call sort

call sort

ret

ret 55

twice sort lt

gt

Two possible
return sites due to
context insensitivity

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

direct calls

indirect calls

call 17,R ret 23

ret 23

Instrument Binary: Labels

60

call sort

call sort

ret

ret 55

twice sort lt

gt

1. Label dynamic destinations
– Insert a unique number at each

– Two destinations are equivalent if CFG contains
edges to each from the same source

lbl 55

lbl 55

lbl 17

lbl 17

lbl 23

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

direct calls

indirect calls

call 17,R ret 23

ret 23

Instrument Binary: Checks

61

call sort

call sort

ret

ret 55

twice sort lt

gt

lbl 55

lbl 55

lbl 17

lbl 17

lbl 23

predicated call 17, R:
transfer control to R
only when R has label 17

predicated ret 23: transfer
control to only label 23

bool lt(int x, int y) {
 return x < y;
}

bool gt(int x, int y) {
 return x > y;
}

void sort(int w[], int len,
bool (*sorted)(int, int))

{...}

void twice(int a[], int b[], int len)
{
 sort(a, len, lt);
 sort(b, len, gt);
}

direct calls

indirect calls

1. Label dynamic destinations
– Insert a unique number at each

– Two destinations are equivalent if CFG contains
edges to each from the same source

2. Add checks at each control transfer

Example of Instrumentation

62

Original code

Instrumented code

Abuse an x86 assembly instruction to
insert “12345678” tag into the binaryJump to the destination only if

the tag is equal to “12345678”

Verify CFI Instrumentation

• Jump targets (e.g. call 0x12345678)

– are all targets valid according to CFG?

• IDs

– is there an ID right after every entry point?

– does any ID appear in the binary by accident?

• ID Checks

– is there a check before every control transfer?

– does each check respect the CFG?
63

Performance in 2005

Size: increase 8% avg

Time: increase 0-45%; 16% avg

– I/O latency helps hide overhead

64

16%

45%

Fast Forward to 2020

• CFI introduced in CCS 2005

• Many new developments since then
– E.g., “Coarse-grained” CFI

• Deployments:
– Forward edge

• gcc >= 4.9, llvm >=3.7, msvc >= 2015 & win >= 8.1

– Backward edge
• Software implementations of shadow stack

• Intel Control-flow Enforcement Technology (CET)

• MS Control Flow Guard

MS Control Flow Guard

ADVERSARY CAN

Overwrite any data memory

at any time, including stack,

heap, data segments

ADVERSARY CANNOT

• Execute data (DEP enabled)

• Modify Code (.text RO)

• Write to %rip

• Overwrite registers in

other contexts

ANALYSIS ASSUMES

• All code compiled w/ CFI

 (3rd party libraries problem)

• Compiler CFG is accurate
(CFG both under and over approx.

control flow)

Assumptions are
often vulnerabilities

or limitations!

68

ConFIRM: Evaluating Compatibility and Relevance
of Control-flow Integrity Protections for
Modern Software . USENIX 2019

Summary: CFI

• Provides a strong theoretic guarantee against a strong
attacker model

• Relies on the precision of static analysis to insert runtime
checks

• Theoretic guarantees are assumptions, and not easy to
satisfy with fully featured real systems.

69

Key Takeaways!

70

• Many techniques exist to
create more secure
software

• Understand the tradeoffs

Design

Develop

Test

ReleaseRun-time
enforcement

Dynamic
Analysis

Architecture

Language

CheckStatic Analysis &
Verification

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

