FOUNDATIONS

AlGAeEn #7-8 - CoFTWARE
Bypassing Defenses &
Return-Oriented
Programming (ROP)

SYSTEMS CRYPTO

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

AVOKOIVWOEIC / AIEUKPIVIOEIC

e H Epyaocia #1 Bynke - rpoBeopia 24 AtrpiAiou 10:591Tp

e [looa vulnerabilities £xoupe;

\VD Dashboard

CVEs Received and Processed

Time New CVEs New CVEs Modified CVEs Modified CVEs Re-
Period Received by NVD Analyzed by NVD Received by NVD analyzed by NVD
Today 76 0 0 1
This Week 353 26 0 2
This Month 1032 50 0 17
Last Month 3370 199 0 102
This Year 9760 4349 0 1225

CVE Status Count NVD Contains
Total 244898 CVE Vulnerabilities 244898
Received 353 Checklists 784
Awaiting Analysis 5799 US-CERT Alerts 249
Undergoing Analysis 191 US-CERT Vuln Notes 4486
Modified 93931 OVAL Queries 10286
Rejected 14018 CPE Names 1263462

CVSS V3 Score Distribution

Severity Number of Vulns
23039

HIGH 60944

MEDIUM 59916

Low 2529

CVSS V2 Score Distribution

Severity Number of Vulns

HIGH 56837

MEDIUM 104170

Low 19074

https://nvd.nist.gov/general/nvd-dashboard

https://nvd.nist.gov/general/nvd-dashboard

Tnv Nponyoupevn Popd

1. Adversary and Classifications
2. Mitigations

o Canaries

o DEP

o ASLR

2NUEPQ

e Bypassing Mitigations
e Return-Oriented Programming (ROP)

Where we left off

Data Execution Prevention

computation + control
Mark stack as \
nonfexecuta.ble shellcode <stuff> Sbuf
using NX bit
|] |]
I !
DEP Canary

DEP prevents injected code on the

stack from executing

DEP Scorecard

Data Execution Prevention

Performance * with hardware support: no impact
 otherwise: reported to be <1% in PaX

Deployment * kernel support (common on all platforms)
* modules opt-in (less frequent in Windows)

Compatibility * can break legitimate programs

- Just-In-Time compilers
— unpackers

Safety Guarantee code injected to NX pages never execute

but code injection may not be necessary...

Known Fixed Address

addr of buf
(Oxffffd5d8)

caller’s ebp

buf[63] =

buf

Shellcode

buf[0] =

Randomized Address
addr of buf
Add S
\ [‘;Sysouface J (Oxffffd5d8) |~
. . \
\ Randomization caller’s ebp \
\ Oxffffd618 buf 0xffffe4ze\
\ i
\ = |
| S < |
J o @)]
/ < L !
R FN — I
/ Rang g '
/ Oml2e/ m I
Oxffffd5d8 Oxffffe3fs I
________________ ,
V4

-
-
Oxffffd5d8

Base adldress a

Memory

Base adkdress b

Base address ¢

[

1

A
||

Program
* Code

* Uninitialized data
* |nitialized data

Mapped

* Heap

* Dynamic libraries
* Thread stacks
* Shared Memory

Stack

 Main stack

10

ASLR Randomization

a + 16 bit rand r

b + 16 bit rand r,

c + 24 bit rand ry

X A A

[|| ||
Program Mapped Stack
* Code * Heap * Main stack
* Uninitialized * Dynamic

data libraries
* Initialized data || ¢ Thread stacks

* Shared
Memory

* =16 bit random number of 32-bit system. More on 64-bit systems.

11

ASLR Scorecard

Performance * excellent—randomize once at load time

Deployment * turn on kernel support (Windows: opt-in per module,
but system override exists)

* no recompilation necessary

Compatibility * transparent to safe apps
(position independent)

Safety Guarantee * not good on x32, much better on x64
* code injection may not be necessary ...

Checking which defenses are on

e Can be done by inspecting the binary

e Or using tools made for this - e.g., checksec (apt
install)

§ checksec --file=/bin/1ls
RELRO STACK CANARY NX PIE RPATH RUNPATH Symbols FORTIFY Fortified Fortifiable FILE
Full RELRO Canary found NX enabled PIE enabled No RPATH No RUNPATH No Symbols Yes 6 18 /bin/1ls

http://slimm609.github.io/checksec.sh/

13

http://slimm609.github.io/checksec.sh/

A
i

. A

/ ‘.

& w4

{ II i)

i i o

Bypass with return-to-libc Attack (beat DEP)

Rely on existing code (e.g., system())
rather than injecting new code

* setup fake return address

 put arguments (e.g. “/bin/sh”) in correct
registers

e ret will “call” libc function

No injected code!

fake ret addr

&system()

caller’s rbp

buf
(64 bytes)

15

Example ret2libc

How to Attack ASLR?

Non-randomiz Stack GOT
ed memory Juggling Hijacking

ret2ret

17

Brute Force

memory

brute force
search

18

How to Attack ASLR?

Non-randomiz Stack GOT
ed memory Juggling Hijacking

19

Use this if .text section
is not randomized

(Older gcc did not
randomize text without
-PIE flag.)

ret2text attack

Old GCC (<2017) did not randomize text
$ gcc main.c —o main # Default does not create PIE
$ gcc main.c -o main —fPIE # Flag required to enable PIE

Modern GCC (-2017)
$gcc main.c —o main -no-pie # Specifically disable PIE
$ gcc main.c -o main # PIE by default!

Reference: https://leimao.github.io/blog/PIC-PIE/

20

How to Attack ASLR?

Non-randomiz Stack GOT
ed memory Juggling Hijacking

ret2ret

21

Overwrite a function
pointer to point to:

program function
(similar to ret2text)

another lib function in
Procedure Linkage Table

Function Pointer Subterfuge

/*please call me!l*/
int secret(char *input) { ... }

int chk_pwd(char *intput) { ... }
int main(int argc, char *argv[]) {
int (*ptr)(char *input);
char buf[8];
ptr = &chk pwd;

strncpy(buf, argv[1l], 12);
printf("[] Hello %s!\n", buf);

(*ptr)(argv[2]);

saved ebp

-

*ptr /

buffer

Overwrite with
address of secret

22

How to Attack ASLR?

Non-randomiz Stack GOT
ed memory Juggling Hijacking

ret2ret

23

Quiz Question

Which of the following can undermine ASLR?
A. A static .text section

B. A memory disclosure vulnerability that leaks the
ocation of libc functions

C. Function pointers at a known address

D. All of the above

24

Idea:
We forge shell code out of existing application logic gadgets

R Ei{r12:0rE1iled |
Ii r[.Ia]1]J.TL m :ﬂ.@ Requirements:

vulnerability + gadgets + some unrandomized code

e FaY
SJATKEEINANE0aR .
J Saransio Where do we get unrandomized code?

RO, BUIIISIEE D [ii cutimaG :)
IORES F10T) MZZaZINES. 3 party library not randomized

iU %E UKL TS * Compiler did not randomize
GERrUIDS frOM BENK: * Information disclosure vuln leaks the randomization
S GMENES (e.g., base address)

— Info disclosure exploit that chains into

Image by Dino Dai Zovi — Control flow hijack exploit

25

ret = pop rip; jmp rip;

ret is an indirect jump to
whatever is on the stack.

ROP is like programming a
stack-based machine.

The address of a ret
instruction

|

&ret
caller’s rbp

“/bin/sh"

26

ret2ret

If there is a valuable (potential shellcode) pointer on a stack, you might
consider this technique.

&shellcod
SeTeete —> shellcode

rsp ret = pop rip; jmp rip;

overwrite

27

Shellcode isn’t restricted to
us manually encoding
instructions.

We can write shellcode
“programs” using “gadgets”

from existing instructions

Cadgets

Self-Operating Napkin

AVOKOIVWOEIC / AIEUKPIVIOEIC

e H Epvyaoia #1 cival dilaBéoiyn kai oto hitps://hackintro.di.uoa.gr

o ¥Oec eixaue €va outage - apologies

e TicivalTo "p" oTta perms Tou /proc/maps; - man proc!

e [lou TOTTOBETEITAI TO COre apyeio Otav £va TTPOYPAUMA KPAOAPEI;

29

https://hackintro.di.uoa.gr

X0Oec kal ZNnuepa

e Bypassing Mitigations
e Return-Oriented Programming (ROP)

30

An Example Operation

Mem[v2] := vi v,

Desired
Logic Vv
1 ~—rsp
Stack
a,: mov rax, [rsp] ; rax has v1
a,: mov rbx, [rsp+16] ; rbx has v2
a,: mov [rbx], rax ; Mem[v2] := rax

Implementation 1
Intel syntax

31

Implementing with Gadgets

Suppose a,
and a, on

a5
Mem[v2] := vi v,
a

Desired 3
Logic Vv
Stack
a,: pop rax;
rax v, a,: ret
b a,: pop rbx;
: a,: ret
r1p 2, a.: mov [rbx], rax

Implementation 2

Implementing with Gadgets

a5
Mem[v2] := vi v,
a

Desired 3|
Logic v, r'sp
Stack
a,. pop rax;
rax v, a,: ret
b a,: pop rbx;
: a,: ret
r1p 9 a.: mov [rbx], rax

Implementation 2

33

Implementing with Gadgets

a5
Mem[v2] := vi v,
a

: rs
Desired 3 P
Logic v,

Stack
a,. pop rax;

rax 1 a,: ret

x| v, a: POp 1bX:

rip a 4

3 a.: mov [rbx], rax

Implementation 2

34

Implementing with Gadgets

a5
Mem[v2] := vi v, P
a

Desired 3
Logic v,
Stack
a,. pop rax;
rax 1 a,: ret
x| v, a: POp 1bX:
rip a 4
5 a.: mov [rbx], rax

Implementation 2

35

Implementing with Gadgets

a, < rsp

.

Desired a,

Logic v,

Stack

— | Z; feotp b :|> Gadget 1
rbx v, 23 feotp X } Gadget 2
rip s a:: mov [rbx], rax

Implementation 2

36

Equivalence

%

Mem[v2] := vi v,
Desired Logic a,
v

L —<—rsp

Stack - -
Lﬁd gets]

[semantically
equivalent

a . mov rax, [rsp] <—> a_: pop rax; ret
a,: mov rbx, [rsp+l6] «—> a,: pop rbx; ret
a,: mov [rbx], rax <«—> 3, mov [rbx], rax

Implementation 1 Implementation 2

37

Return-Oriented Programming (ROP)

Mem[v2] := vi

Desired Shellcode

< %rbp

a,: pop rax; ret

a,: pop rbx; ret

a,: mov [rbx], rax

Desired store executed!

38

Gadgets

* Agadget is a set of instructions for carrying out a
semantic action

— mov, add, etc.

» Gadgets typically have a number of instructions
— One instruction = native instruction set
— More instructions = synthesize <- ROP

* Cadgets in ROP generally (but not always) end in return

39

In regular x64, RIP is instruction pointer

In ROP, RSP is the effective instruction pointer

In regular x64, assembly, instruction is

ROP

Intuition/Anangy “atomic” unit of execution

In ROP, “gadget” is the atomic unit

Think of ROP as a “weird” program written in
an alternative “assembly language”

40

ROP Programming

1. Disassemble code
2. ldentify useful code sequences as gadgets
3. Assemble gadgets into desired shellcode

Disassemble code

Compiler-created gadget: A sequence of instructions
inserted by the compiler ending in ret.

Unintended gadget: A sequence of instructions not
created by the compiler, e.g., by starting disassembly at
an unaligned start.

42

ldentify Useful Gadgets

Definition:

A sequence of instructions is useful

- if it is a sequence of valid instructions ending in a ret
instruction

- none of the instructions causes the processor to transfer
execution away without reaching the ret

Note: can be intended or unintended (alignment)

43

Useful ROP Gadgets

* Load/Store

* Arithmetic/Logic operations
* Control Flow

* System calls

e Function calls

Turing complete!

Oxdeadbeef

L2

> pop %edx

%esp

L

ret

Cadget that loads a constant

™ movl 64(%eax), Y%eax
ret

Y

%esp

Oxdeadbeef

+64]

> pop %eax
ret

Gadéet that loads from memory

44

ROP Programming

1. Disassemble code
2. ldentify useful code sequences as gadgets
3. Assemble gadgets into desired shellcode

e Active community has developed several tools for

Finding Gadgets

automatically identitying such gadgets

nttps://git

U

b.com/]Jonat

nanSalwan/ROPgadget

nttps://git

U

n.com/Ben-

Lichtman/ropr

nttps://scoding.de/ropper/

and many more!

46

https://github.com/JonathanSalwan/ROPgadget
https://github.com/Ben-Lichtman/ropr
https://scoding.de/ropper/

ROP Probability of Success

Can call libc functions in
80% of programs greater
than /bin/true (20KB)

0.3

- — (Call/Store

— = Call (libc)
[| [| | [[
Te+04 2e+04 5e+04 Te+05 2e+05 5e+05 Te+06

Figure taken from Q: Exploit Hardening Made Easy (a Compiler for ROP programs)

47

https://users.ece.cmu.edu/~aavgerin/papers/q-usenix-11.pdf

Quiz Question

Which of the following defenses complicates ROP

attacks the MOST?
A. Stack canaries
B. Data execution prevention
C. Fully applied ASLR (including .text)
D. Removing unneeded system-like functions from

ibc

48

Making our lives easier

® Reverse engineering tools
o https://github.com/wtsxDev/reverse-engineering

e Exploitation libraries
o https://github.com/Gallopsled/pwntools

e Mixed
o https://github.com/pwndbg/pwndbg

49

https://github.com/wtsxDev/reverse-engineering
https://github.com/Gallopsled/pwntools
https://github.com/pwndbg/pwndbg

Takeaways

Control Flow Hijack:
Control + Computation

Buffer overflows overwrite return address

Format string vulnerabilities

— Read/write arbitrary memory
Defenses
— Canary, DEP, ASLR

— Beatable using various clever tricks

50

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

