FOUNDATIONS

SOFTWARE

AilaAegn #6 - Mitigations

SYSTEMS CRYPTO

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

Tnv Nponyoupevn Popd

1. CVEs

2. Format String Attacks and review

AVOKOIVWOEIC / AIEUKPIVIOEIC

e Epvacia #1 0a Byel yExp!l To 10 TEAOC TNC £LOOuAdAC (eATTI(W)

EpwTtnoecic pending:
e [1aTi TO TTPOYPAUMA "OKAEI" aKOPa KAl OTavV OEV KAVOUUE overwrite To return
address;

o [lpctrel va £xoupe shell access yia va 1pE€oupe Katroio exploit;

2 NUEPQ

e Adversary and Classifications

e Mitigations

Two Concepts
(Only a few | need
you to memorize)

Defining The Adversary (1/2)

* Adversary = < Goals, Capabilities >

* Goal: What constitutes success?
— May involve subgoals
— Example goal: Gain control of X's data

* Sub-goal: Reconnaissance: search online for info about X
— Sub-goal: Access: Guess X's ssh password on Linux lab
» Sub-goal: Lateral movement: Use ssh account to move to other services / linked accounts

* Capabilities: What resources can the adversary use?

— 1 computer or millions?
— Physical or remote access? Why don't we include

— Access to source code? adversa ry’s strategy?

Defining The Adversary (1/2)

* Adversary = < Goals, Capabilities >

FRANCE

m Dijon

mEpina

Luxembourg

= Bonn

GERMANY

Heidelberg m

Switzerland

Why don't we include

adversary's strategy?

Security Mechanism Classification for a property (2/2)

. Prevention. Prevent issues from happening. Any
precautionary measures.

. Detection. Assuming an incident took place, detect them as
early and as accurately as possible.

. Resilience. Assuming one or multiple incidents took place,
ensure the overall system security degrades gracefully and
does not collapse.

. Deterrence. Measures to ensure penalties for actors
responsible for security incidents. Policy-based.

Control Flow
Hijack Defenses /
Mitigations

Defenses

1. Canaries
2. DEP (Data Execution Prevention) / NX (No Execute)

3. ASLR (Address Space Layout Randomization)

Defenses we will see today focus on

preventing control hijacks (Prevention)

10

['ati o TpoOypappa "okdel” akopo Kol 0tay 0V Kévovue overwrite to return address;

int is_good() {
char * magic = "8675309";
char buf[32];
fread(buf, 128, 1, stdin); // BOFs are cool
if (strncmp(magic, buf, strlen(magic)) == 0) {

return 1;

return 9;

MT1TOpOUuE VO EAEYEOUPE TOV IP O€ €va

) TTPOYPOAUMO CaV Kal auTo; 'arTi vai/oxi;

11

Canary / Stack Cookies

What Is a “Canary”?

Wikipedia: “the historic practice of using canaries in coal mines, since they
would be affected by toxic gases earlier than the miners, thus providing a
biological warning system.”

The American Humane Association
monitored the animal action.

No animal was harmed in the

making of this televisiciipregram.

AMERICAN
¥ HUMANE
ASSOCIATION.

Mim & Televizion Unit

13

Reminder: Buffer Overflow

#include<string.h>
int main(int argc, char **argv) {

char buf[64];

gets(buf);

}

Dump of assembly code for function main:
40041d:
4004fe:
400501 :
400505 :
400508 :
40050c:
400510:
400518:

push
mov
sub
mov
mov
lea
mov
callq

%rbp

%rsp,%rbp
$0x50,%rsp

%rdi, -0x48(%rbp)
%rsi,-0x50(%rbp)
-0x40(%rbp) ,%rax
%rax,srdi

400400 <gets@plt>

rax buf

rdi buf >

argv

argc

return addr

caller’s rbp

<—%rbp

Ox50
bytes

v<—%rsp
14

IgJelVIMl “A'x72 + “\xEF\xBE\XxAD\xDE\x00\x00\x00\x00"

#include<string.h>
int main(int argc, char **argv) {
char buf[64];
gets(buf);
}
Dump of assembly code for function main:
4004fd: push %rbp
4004fe: mov %rsp,%rbp
400501: sub $0x50,%rsp
400505: mov %rdi, -0x48(%rbp)
400508: mov %rsi,-0x50(%rbp)
40050c: lea -0x40(%rbp) ,%rax
400510: mov %rax,srdi
400518: callg 400400 <gets@plt>
40051d: leaveq
40051e: retq

corrupted
overwritten
overwritten

rax
rdi

buf
buf

argv

argc
0x0...DEADBEEF

AAAAAAAA

< %rbp

<%rsp

15

StackGuard

[Cowen et al. 1998]

Idea:
argv
* prologue introduces a canary word between argc
return addr and locals return addr
: . caller’s rbp
* epilogue checks canary before function < %rbp
returns I
Ox50
Wrong canary => Overflow bytes

v<—%rsp
16

gcc Stack-Smashing Protector (ProPolice)

Dump of assembler code for function main:
4005a0: sub $0x58,%rsp
400534 : mov %fs:0x28,%rax

4005ad: mov %rax,0x48(%rsp) return addr
4005b2: xor %eax, %eax)
4005b4: mov %rsp,%rdi caller’s rbp
4005b7: callg 400430 <gets@plt> _
4005bc: mov Ox48(%rsp),%rdx

4005cl: xor %fs:0x28,%rdx

4005ca: je 4005d1 <main+0x31>

4005cc: callg 400470 < stack chk fail@plt>
4005d1: add $0x58,%rsp
4005d5: retq

. L . buf
Compiled with "gcc -fstack-protector (64 bl;,tes)

(you can also use -fstack-protector-all or -fstack-protector-strong)

17

Canary Should Be HARD to Forge

* Terminator canary

— 4 bytes: O,CR,LF,-1
(low->high)

* Random canary

— 4 random bytes chosen at
load time

— stored in a guarded page
— need good randomness

— terminate strcpy(), gets(), ...

18

Proposed Defense Scorecard

Aspect Defense

Performance « Smaller impact is better

Deployment « Can everyone easily use it?
Compatibility « Doesn’t break libraries

Safety Guarantee « Completely secure vs. easy to bypass

Canary Scorecard

Aspect Canary

Performance several instructions per function

time: a few percent on average

size: can optimize away in safe functions
(but see MS08-067 *)

Deployment recompile suffices; no code change
Compatibility perfect—invisible to outside
Safety Guarantee not really...

Shadow stack and canaries performance

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43809.pdf

Bypass: Data Pointer Subterfuge

Overwrite a data pointer first...

int *ptr;

char buf[64];

memcpy (buf, userl, large);
*ptr = user2;

return addr

caller’s rbp

ptr

buf
(64 bytes)

21

Bypass: Combine with a memory leak

Print out canary value first and use it in overwrite!

int *ptr;

char buf[64];
printf(user2);

memcpy (buf, userl, large);

return addr

caller’s rbp

ptr

buf

(64 bytes)

22

Canary Weakness

Check does not happen until epilogue...

» func ptr subterfuge - PointGuar } ProPolice

puts arrays
SafeSEH above others
SEHOP

when

possible

\ J
!

struct is fixed;
& what about heap?

* C++ vtable hijack

* exception handler hijack

23

Quiz

Which attack would be MOST effective at hijacking control on a
canary-protected machine?

A.
B.
C.

Using a single memcpy-based buffer overflow of a local variable

Using a format-string vulnerability and the “%n” specifier

Using a format-string vulnerability and a targeted address specifier
(e.g., “%9$sBBBB\x47\xf7\xff\xff")

Using a format-string overflow of a local variable
(e.g., “%80u\x3c\xd3\xff\xff”)

24

Data Execution Prevention (DEP) /
No eXecute (NX)

Idea: maybe we shouldn't allow data to be executable

25

How to Defeat Exploits?

/

computation + control
—
shellcode padding &buf
\ \
| |
DEP Canary

26

Data Execution Prevention

—
shellcode padding &buf

Mark stack as
non-executable
using NX bit

DEP prevents injected code on the

(still a Denial-of-Service attack!) stack from executing

27

DEP Scorecard

Data Execution Prevention

Performance * with hardware support: no impact
 otherwise: reported to be <1% in PaX

Deployment * kernel support (common on all platforms)
* modules opt-in (less frequent in Windows)

Compatibility * can break legitimate programs

- Just-In-Time compilers
— unpackers

Safety Guarantee

code injected to NX pages never execute

but code injection may not be necessary...

28

Return-to-libc Attack

Overwrite return address with the address of a libc
function

* setup fake return address

 put arguments (e.g. “/bin/sh”) in correct registers /
memory

e ret will “call” libc function

No injected code!

fake ret addr

&system()

caller’'s rbp

buf
(64 bytes)

29

" Address Space)
addr of buf Lavout addr of buf
(Oxffffd5d8) |\ yort (Oxffffd5d8) |
. Randomization \
caller’s ebp \ caller’s ebp \\
buf[63] = buf Oxf{ffd618 buf Oxffffeg28
i
\ \
\ " \
v | v :
o o ‘
O I O '
O l O b
— — |
) / Q |
- / < |
buf{O] ->fn ______ Oxffffdsds | fn ______ 0xffffe3f§
J
/
/

= &
Oops... EitEE

30

ASLR

Traditional exploits need precise addresses
— stack-based overflows: location of shell code

— return-to-libc: library addresses

e Problem: program’s memory layout is fixed

— stack, heap, libraries etc.

* Solution: randomize addresses of each region!

31

Running cat Twice

.rw-p 082ac000 00:00 0

r-xp 00000000 08:01 1750463
.r--p 00155000 08:01 1750463

rw-p 00156000 08:01 1750463

-rw-p bffeb0od 00:00 0

e Run 2

086e8000-087095000 .
b7d92000-b7eef000

b7eef000-b7ef0000 .
b7ef0000-b7ef2000 -
bf902000-bf917000 -

rw-p 086e8000 00:00 0
r-xp 00000000 08:01 1750463
r--p 00155000 08:01 1750463
rw-p 00156000 08:01 1750463
rw-p bffeb0od® 00:00 0

[heap]
/1ib/i686/cmov/1ibc-2.7.s0
/1ib/i1686/cmov/1libc-2.7.s0
/1ib/i1686/cmov/1ibc-2.7.s50
[stack]

(heap]
/1ib/i686/cmov/1ibc-2.7.50
/1ib/i686/cmov/1ibc-2.7.s0
/1ib/i686/cmov/1ibc-2.7.s0
[stack]

32

Base address a

Memory

Base address b

Base address ¢

A A A

[|| ||

Program Mapped Stack

* Code * Heap * Main stack
* Uninitialized * Dynamic

data libraries
* Initialized data || ¢ Thread stacks
* Shared

Memory

33

ASLR Randomization

a + 16 bit rand r

b + 16 bit rand r,

c + 24 bit rand ry

A A A

[| ||
Program Mapped Stack
* Code * Heap * Main stack
* Uninitialized * Dynamic

data libraries
* Initialized data || ¢ Thread stacks

* Shared
Memory

* =16 bit random number of 32-bit system. More on 64-bit systems.

34

ASLR Scorecard

Performance * excellent—randomize once at load time

Deployment * turn on kernel support (Windows: opt-in per module, but system
override exists)

* no recompilation necessary

Compatibility * transparent to safe apps
(position independent)

Safety Guarantee * not good on x32, much better on x64
* code injection may not be necessary ...

Ubuntu - ASLR

e ASLR is ON by default [Ubuntu-Security]

— cat /proc/sys/kernel/randomize va_space
* |In older systems: 1 (stack/mmap ASLR)
* In later releases: 2 (stack/mmap/brk ASLR)

— stack/mmap/brk/exec ASLR: available since 2008 - still systems
around without it

e Position Independent Executable (PIE) with “-fPIE —pie” Remember: you probably

want this enabled

36

How to Attack ASLR?

Non-randomiz Stack GOT
ed memory Juggling Hijacking

) eziext L rearet L reizgot

ret2pop

37

More to Come Later

L5730 2y i

f?ﬁ;‘l.}/v .'. % SR
i ¥y
417

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

