AldAEgn #3 o ContrOI FOUNDATIONS
Flow Hijack Attacks

SOFTWARE

HEARTBLEED MUST | I MEAN, THISBUG ISNT [IT' NOT JUST KEYS. | [WELL, THE ATTACK 1S
BE THE \JORST WEB | JUST BROKENI ENCRYPTION. | IT'S TRAFRC DATA. UMITED TO DATA SORED

SECURITY LAPSE EVER. IT LET5 \JEBSITE VISITORS EMAILS. PASSWORDS. | | IN COMPUTER MEMORY.

ORST 50 FAR. | MAKE. A SERVER DISPENSE | EROTIC FANRCTION. |) 50 PAPER 15 SAFE. SYSTEMS CRYPTO
GVE VS TIME. | RANDOM MEMORY (ONTENTS, IS EVERYIFING AND CLAY TRBLETS,

COMPROMISED? | | OUR IMAGINATIONS, Too. |
] SEE, UELL BE FINE.

el g7 77] 77 .

https://xkcd.com/1353/

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

Tnv Nponyoupevn Popd

x86 Fundamentals

1.

o Call Return Semantics

7))
-
O
©
=
©
=
O
T
)
>
@)
®
4=
-
O
Y
@)
/p)
O

Bas

2.

o Live example

AVOKOIVWOEIC / AIEUKPIVIOEIC

EmTioTpEPel N KARon cuoTtrpaToc (system call) execve;

Ortav ypagouue €va string oto stack 1o ypa@ouue TTpog Ta TTAVW;
Oa uttipxav buffer overflows av atTAd ypA@ape TTPOC Ta KATW;
2.€ TI JOU €ival Xproipgo 1o nop-sled;

2Nuepa KAgivel N Epyacia #0 - ynv ¢exaoToUuue!

2. NUEPA Kal Auplo

Control Flow Hijack Attacks

Basics of buffer overflow attacks continued (shellcode + nopsled)
x86 Fundamentals continued

Format String Attacks

Mitigations and Bypass

| don't care what anything was
designed to do, | care about what it
can do.

— (Gene /{/wn} —

AZ QUOTES

Terminology: Exploits and Types of Exploits

An exploit is an input (aka payload) that violates the intended
semantics of the target application.

Method Objective

Denial of Service Cause program to crash or stop servicing clients

Control Flow Hijacks (or Remote Code Execution -
RCE) are considered to be the worst vulnerabilities a
program can have.

Why?

Control Flow Hijack:
Always Computation + Control

E.g., buffer overflow

(BOF): ,
computation +

nop-sled |shellcode (aka payload)

~_

control

&buf

7

* code injection

* return-to-libc

¢ GOT overwrite

* heap metadata overwrite

* return-oriented programming

Same principle,

different
mechanism

Shellcode

Traditionally exploits injected assembly
instructions for exec(“/bin/sh”)

into buffer. argv

Data Execution Prevention and other defenses A

have made this exploitation technique &buf

ineffective on consumer commercial OSes for

over a decade. < %bp

Sadly, this is still applicable in areas like IoT,
energy, and so on.

 Considered a basic skill for exploitation shellcode
(even if not on your latest OS)

* See "Smashing the stack for
fun and profit” for one string

arg2

 orsearch online OR write it yourself!

arg1

< %sp

Shellcode Example

Assembly Form

Note absence of "\O' byte - why?

Binary String Form

08048060

8048060 :

<

8048062 :
8048063 :
8048068 :
804806d:
804806f :
8048071 :
8048073 :
8048075
8048077 :
8048079
804807a:

_start>:

31
50
68
68
89
89
89
bo
cd
31
40
cd

co

2f 2f 73 68
2f 62 69 6e
e3
c
c2
ob
80
co

80

Xor
push
push
push
mov
mov
mov
mov
int
Xor
inc
int

%eax, %eax
%eax
$0x68732f2f
$0x6e69622f
%esp, %ebx
%eax, %ecx
%eax, %edx
SOxb, %al
$0x80
%eax, beax
%eax
$0x80

P

"\x31\xcO\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x89\xc1\x89\xc2\xbo\x0b"
"\xcd\x80\x31\xcB\x40\xcd\x80"

exec("/bin/sh")

https://www.exploit-db.com/exploits/43716

10

https://www.exploit-db.com/exploits/43716

Various Shellcode Databases and Types

https://www.exploit-db.com/ , https://shell-storm.ora/ ...

Alphanumeric Shellcode

English Shellcode

Platform Independent Shellcode

11

https://www.exploit-db.com/
https://shell-storm.org/
https://packetstormsecurity.com/files/155844/Linux-x86-Execve-Alphanumeric-Shellcode.html
https://www.cs.jhu.edu/~sam/ccs243-mason.pdf
https://softsec.kaist.ac.kr/~sangkilc/papers/cha-ccs10.pdf

Running Shellcode with C

#include <stdio.h>

S gcc -o shell shell.c -m32

#include <string.h> ubuntu@c@ab18986f52:~$./shell

int main() { Shellcode length : 28 bytes
Segmentation fault (core dumped)
char code[] = "\x31\xcB\x50\x68\x2f\x2f\x73" $ gcc -o shell shell.c -m32 -zexecstack

" " ubuntu@cab18986f52:~S ./shell
\x68\x68\x2f\x62\x69\x6e\x89 Shellcode length : 28 bytes |

"\xe3\x89\xc1\x89\xc2\xb@\x0b" S
"\xcd\x80\x31\xc0\x40\xcd\x80" ;
printf ("Shellcode length : %d bytes\n", strlen (code));
int(*f)()=(int(*)())code;
f0);

return 0;

Making stack memory executable is required - why?

Tip: Quickly disassemble a byte sequence with: echo -ne "\x31\xc0\x50" | ndisasm -b 32 -

Author: pereira https://www.exploit-db.com/exploits/43716 .

https://www.exploit-db.com/exploits/43716

What is a system call?

How do you make a system call as a programmer?

13

nop

Shellcode

nop

Executing System Calls

1. Put syscall number in eax
O rax in 64 bit

nop | nop 2. Putarguments in ebx, ecx, edx, etc

nop

nop

nop

nop | hop | nop

relative
jump

NOP-Sled

nop

nop

relative
jump

o rdi, rsi, rdx, ... in 64 bit
3. Callint Ox80 (syscall)

4. System call runs. Result in eax (rax)

execve syscall number is Oxb
address of string “/bin/sh” in ebx, 0 in ecx & edx
execve(“/bin/sh”, 0, 0);

How am | supposed to remember all that? You don't! Look it up:
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

14

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

x86: Two single-byte instructions to remember

\x90: nop instruction. A no-operation (nop for short)
instruction is one that does nothing. Useful for exploit

development by why would CPUs have such an instruction?

\xcc: int 3 instruction. An interrupt to stop the normal flow of
execution and usually how debuggers like gdb implement
breakpoints. int Ox80 is two bytes, why did computer
architecture people decide to use a single byte for it?

15

https://en.wikipedia.org/wiki/NOP_(code)
http://www.cs.columbia.edu/~junfeng/09sp-w4118/lectures/int3/int3.txt
http://www.cs.columbia.edu/~junfeng/09sp-w4118/lectures/int3/int3.txt

Tip: nop Sleds (or Slides or Ramps)

WARNING:

Environment changes address of buf
$ OLDPWD="""./vuln

VS.

$ OLDPWD-="aaaa” ./vuln

Pro Tip: Inserting nop’s (0x90)
into shellcode allows for slack

Why?

-

-

Overwrite
addr with any
position in nop

slide ok

|

nop
slide

env

return addr

caller’s rbp

execve

0x90

0x90

16

Probability of Success

Assume a 32-bit system where I'm randomly

jumping to the stack. What are the odds I'll

succeed in the following two scenarios?

Address: 0xf0808080 \x90 ' \x90 | \x90 | shellcode

e

3-byte nop sled

Address: 0xf0808080 \x90 | \x90 | \x90 @ \x90 \x90 shellcode

e

30,000-byte nop sled

Calling
Conventions
(cdecl - x86/32bit)

https://en.wikipedia.org/wiki/X86_calling_conventions

Filling in Stack Gaps

int orange(int a, int b) Need to access arguments

{
int ¢, d; local vars (buf, ¢, and d)
if(a > b)
C = a;
else Need space to put arguments for
c = b; callee
d = red(c, buf);
return d; Need a way for callee to return
) values

Calling convention determines the above features

19

int orange(int a, int b)

{

cdecl — the default for Linux & gcc

char buf[1l6];
int c, d;
if(a > b)

C = a;
else

c = b;
d = red(c, buf);
return d;

parameter
area (caller)

Don't worry!

We will walk through

these
one by one.

pelore
calling red

after red has
been called

return addr
caller’s ebp
callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

20

When orange attains control,

1.

return address has already been pushed onto
stack by caller

b

a

return addr

<«—%ebp
(caller)

21

When orange attains control,

1. return address has already been pushed onto

stack by caller b

2. own the frame pointer 2

- push caller’s ebp
- copy current esp into ebp s
%ebp

and

%esp

caller’s ebp

- first argument is at ebp+8

22

When orange attains control,

1.

2.

3.

return address has already been pushed onto
stack by caller
own the frame pointer

- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8
save values of other callee-save registers if
used

- edi, esi, ebx: via push or mov

- esp: can restore by arithmetic

b
a

return addr

caller’s ebp

callee-save

23

When orange attains control,
1. return address has already been pushed onto

stack by caller b
2. own the frame pointer -
- push caller’s ebp
- copy current esp into ebp return addr
- firstargumentis at ebp+8 orange’s caller’s ebp
3. save values of other callee-save registers if initial callee-save
used stack locals
- edj, esi, ebx: via push or mov frame (buf, ¢, d > 24 bytes if

stored on stack)

- esp: can restore by arithmetic

4. allocate space for locals
- subtracting from esp

- “live” variables in registers, which on contention,
can be “spilled” to stack space

24

For caller orange to call callee red,

b
a

return addr

caller’s ebp

callee-save

locals
(buf, c, d > 24 bytes if
stored on stack)

25

For caller orange to call callee red,

1.

push any caller-save registers if their values
are needed after red returns

eax, edx, ecx

b
a

return addr

caller’s ebp

callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

caller-save

26

For caller orange to call callee red,

1.

2.

push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx
push arguments to red from right to left
(reversed)

- from callee’s perspective, argument 1 is nearest
in stack

b
a

return addr

caller’s ebp

callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

caller-save

27

For caller orange to call callee red,

1.

2.

3.

push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx
push arguments to red from right to left
(reversed)

- from callee’s perspective, argument 1 is nearest
in stack

push return address, i.e., the next instruction
to execute in orange after red returns

orange’s
stack =<
frame

b
a

return addr

caller’s ebp

callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

caller-save

C

return addr

28

For caller orange to call callee red,

1.

2.

3.

4.

push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx
push arguments to red from right to left
(reversed)

- from callee’s perspective, argument 1 is nearest
in stack

push return address, i.e., the next instruction
to execute in orange after red returns
transfer control to red

- usually happens together with step 3 using call

orange’s
stack =<
frame

b
a

return addr

caller’s ebp

callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

caller-save

C

return addr

29

When red attains control,

1.

return address has already been pushed onto
stack by orange

b

a
return addr
caller’s ebp
callee-save

locals

(buf, ¢, d > 24 bytes if
stored on stack)

caller-save
buf
C

return addr

30

When red attains control,

1.

2.

return address has already been pushed onto
stack by orange

own the frame pointer

b

a
return addr
caller’s ebp
callee-save

locals

(buf, ¢, d > 24 bytes if
stored on stack)

caller-save
buf
C
return addr

orange’s ebp %e?ip
an

%esp

31

When red attains control,

1.

2.

return address has already been pushed onto
stack by orange

own the frame pointer
... (red is doing its stuff) ...

b

a
return addr
caller’s ebp

callee-save

locals
(buf, ¢, d > 24 bytes if

stored on stack)

caller-save
buf
C
return addr

orange’s ebp

When red attains control,

1.

kA WD

return address has already been pushed onto
stack by orange

own the frame pointer
... (red is doing its stuff) ...
store return value, if any, in eax

deallocate locals
- adding to esp
restore any callee-save registers

b

a
return addr
caller’s ebp
callee-save

locals

(buf, ¢, d > 24 bytes if
stored on stack)

caller-save
buf
C
return addr

orange’s ebp %ezp
an

%esp

33

When red attains control,

1.

kA WD

return address has already been pushed onto
stack by orange

own the frame pointer
... (red is doing its stuff) ...
store return value, if any, in eax
deallocate locals
adding to esp
restore any callee-save registers
restore orange’s frame pointer
pop %ebp

b
a
return addr
caller’s ebp
<—%ebp
callee-save

locals

(buf, ¢, d > 24 bytes if
stored on stack)

caller-save
buf
C

return addr
<«—%esp

34

When red attains control,

1.

kA WD

8.

return address has already been pushed onto
stack by orange

own the frame pointer
... (red is doing its stuff) ...
store return value, if any, in eax
deallocate locals
- adding to esp
restore any callee-save registers
restore orange’s frame pointer
- pop %ebp
return control to orange

- ret
- pops return address from stack and jumps there

b
a

return addr

caller’s ebp

<—%ebp
callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

caller-save
buf

C
<«—%esp

35

When orange regains control,

b
a

return addr

caller’s ebp

<—%ebp
callee-save

locals
(buf, c, d > 24 bytes if
stored on stack)

caller-save
buf

C
<«—%esp

36

When orange regains control,

1.

2.

clean up arguments to red
adding to esp
restore any caller-save registers

pops

b
a

return addr

caller’s ebp

<—%ebp
callee-save

locals
(buf, ¢, d > 24 bytes if
stored on stack)

<«—%esp

37

cdecl — One Slide

arguments pushed right-to-left

callee saves: ebx, esi, edi, ebp, esp ebp often used to deref args and
local vars

38

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 1:
Basic Architecture

NOTE: The Intef® 64 and IA-32 Architectures Software Developer's Manual consists of nine volumes:
Basic Architecture, Order Number 253665; Instruction Set Reference A-L, Order Number 253666;
Instruction Set Reference M-U, Order Number 253667; Instruction Set Reference V/-Z, Order Number
326018; Instruction Set Reference, Order Number 334569; System Programming Guide, Part 1, Order
Number 253668; System Programming Guide, Part 2, Order Number 253669; System Programming
Guide, Part 3, Order Number 326019; System Programming Guide, Part 4, Order Number 332831. Refer
to all nine volumes when evaluating your design needs.

Order Number: 253665-060US
September 2016

64-bit is different, but not by much

Action Notes

caller saves: rax, rdx, rcx, rsi, rdi, r8-r11

arguments 1n rdi, rsi, rdx, rcx, r8, r9, and
then stack

call pushes return addr

callee saves: rbx, rbp, r12-r15

rbp often used to deref
local vars

return value

pass back using rax

argument cleanup

caller’s responsibility

39

Terminology

* Function Prologue - instructions to set up stack space and
save callee saved registers. Typical prologue:
push %ebp
mov %esp, %ebp

* Function Epilogue - instructions to clean up stack space
and restore callee saved registers. Typical epilogue:

leave ; equiv to: mov %ebp,%esp; pop %ebp;
ret

40

Stack frames may not look as you'd expect - Tips

Factors affecting the stack frame:

* statically declared buffers may be padded
* what about space for callee-save regs?
 [advanced] what if some vars are in regs only?

 [advanced] what if compiler reorders
local variables on stack?

gdb is your friend!

(google gdb quick reference)

Use brute force when it makes sense :)

return addr

caller’s rbp

buf

< %bp

< %rp

41

Debugging ue GDB

1. gcc-g-ggdb -0 prog prog.c

2. gdb --args ./program argl arg?2
3. run, break, step, continue, finish
4. backtrace

5. print /x commands

6. Cheat Sheet

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

Two more x86
Basic Concepts

Memory can be addressed
with more than [register]

An Addressing Mode specifies how to calculate
the effective memory address of an operand by
using information from registers and constants
contained with the instruction or elsewhere.

44

Motivation:
Common C
memory index

patterns

Type buf[s];
buf[index] = *(<buf addr>+sizeof(Type)*index)

Meaning on

Form memory M Example at&t
imm (1) M[r + imm)] -8(%rbp)

imm (r,, r,) M[r, + 1, + imm] -16(%rbx, %rcx)

imm (r,, T, S) M[r, +1,*s + imm] -8(%rdx, %r9, 48)
1imm M[imm] 0x12345678

Loading a value from memory: mov

<rax> = *buf;
mov -0x38(%rbp),%rax (A)
mov rax, [rbp-0x38] (I)

Referencing

Memory Loading Effective Address: lea

<rax> = buf;
lea -0x38(%rbp),%rax (A)
lea rax, [rbp-0x38] (I)

Assembly is spaghetti

Abstractions you know and love What the machine executes

o if-then-else Directjumps: Jjmp <addr>

* functions * Indirect jumps: Jmp <register>
* for loops * Branch: 1f <flag> goto line

* while loops

x64 Processor

Two types of unconditional control flow RIP FLAGS
RAX RSI
o Dlrc.ectju.mp: jmp 0x45 RDX RD|
* Indirect jump: jmp *rax
RCX R8
RBX R9
RSP R10
RBP R16

Note: Typically no direct way to set or get RIP

A very special register. EFLAGS

e EFLAGS are hardware bits used to determine control flow
» Set via instructions implicitly.

* “cmp b,a”: calculate a-b and set flags:
— Was there a carry? (CF Flag set)
— Was the result zero? (ZF Flag set)
— What was the parity of the result? (PF flag)
— Did overflow occur? (OF Flag)
— Is the result signed? (SF Flag)

49

If’ implementation pseudocode

C code

Assembly

d: cmp -0x8(%rbp),%eax
10: jg 19 <if_then_else+0Ox19>

12: mov $0x1,%eax
17: jmp 1le <if_then_else+Oxle>
19: mov $0x0,%eax

Line d: calculate

%eax - mem[ebp-0x8]

 sets ZF=0 if the result is zero

* sets SFif the result is negative

Line 10: Semantically, jump if eax is

greater when

* If ZF = O and SF=0, then the result is
non-negative so eax was greater

* If SF=1and OF=1, the result is
negative but overflow occurred,
which means eax is still greater

* Else eax is smaller

31302928272625242322212019181716151413 1211109 8 7 6 5 4 3 2 1 O

IVIV
OOOOOOOOOODII
PF

A
C

Vv
M

Rlg|N olp|i|T|s|z|s]|AlalPl4lC
FIO|T FIF|F{F|F|F|O|F|O|F|T|F

roQ-

ID Flag (ID} ’
Virtual Interrupt Pending (VIP)

Virtual Interrupt Flag (VIF)
Alignment Check (AC)

Virtual-8086 Mode (VM) -
Resume Flag (RF)
Nested Task (NT)

XXX X XXX

b o

S Overflow Flag (OF

Direction Flag (DF)
X Interrupt Enable Flag (IF)

(TE) .
Sign Flag (SF)

Zero Flag (ZF)

Auxiliary Carry Flag (AF)
Parity Flag (PF)

Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

XOO wnuonvonm

Reserved bit positions. DO NOT USE.
Always set to values previously read.

From the Intel x86 manual

Bug finding aside: Although the x86
processor knows every time integer
overflow occurs, C does not make this

result visible.

51

See the x86 manuals available on
Intel’s website for more information

JO Jump if overflow OF ==

JNO Jump if not overflow OF ==

JS Jump if sign QF ==

\V4 Jump if zero 7F =—

JE Jump if equal 7F ==

JL Jump if less than SF <> OF

IEE Jump if less than or ZF ==1 or SF <> OF

equal
JB Jump if below CF ==

JP Jump 1f parity PF ==

52

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

