
Θανάσης Αυγερινός

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών

Εισαγωγή στην Ασφάλεια

SOFTWARE

FOUNDATIONS

SYSTEMS CRYPTO

HUMANS

Διάλεξη #1 - Docker
Basics

Thank you to https://home.infn.it/it/ for their Docker slides!

https://home.infn.it/it/

Την Προηγούμενη Φορά

2

1. Διαδικαστικά

2. Σκοπός του μαθήματος

3. Ασφάλεια και Συστήματα

4. Σχέδιο για το μάθημα φέτος

5. Το πρώτο μας exploit

Ανακοινώσεις / Διευκρινίσεις

3

Ερωτήσεις που δέχτηκα:
● Είναι όλα τα vulnerabilities που βρίσκουμε

γνωστά;
○ Vulnerability σε τρέχον λογισμικό 0-day
○ Ο πιο επικίνδυνος τύπος αδυναμίας

● Τι κάναμε στο πρώτο μας exploit;
○ Αναλογία με το να ανοίξουμε PDF

με έναν PDF reader;
● Μπορεί κάποιος να δημιουργήσει exploit

χωρίς source;
● Λαπτοπ εν ώρα μαθήματος;

https://en.wikipedia.org/wiki/Zero-day_(computing)

Σήμερα

4

● Docker (Linux / Bash κτλ αν προκύψει)

Docker Basics
Why: (1) embarrassing not to know, (2) understanding how modern software is

built/packaged/secured today, and (3) to complete our hw :P

History of Docker

2004
Solaris Containers

/ Zones
technology
introduced

2008
Linux containers

(LXC 1.0)
introduced

2013
Solomon Hykes
starts Docker as

an internal project
within dotCloud

Mar 2013
Docker

released to
open source

Feb 2016
Docker introduces first
commercial product –

now called Docker
Enterprise Edition

Today
Open source community

includes:

- 3,300+ contributors
- 43,000+ stars
- 12,000+ forks

A History Lesson

One application on one physical
server

In the Dark Ages

Historical limitations of application deployment
• Slow deployment times
• Huge costs
• Wasted resources
• Difficult to scale
• Difficult to migrate
• Vendor lock in

17

A History Lesson
Hypervisor-based Virtualization

• One physical server can contain multiple applications
• Each application runs in a virtual machine (VM)

Benefits of VMs
• Better resource pooling

– One physical machine divided into multiple virtual machines
• Easier to scale
• VMs in the cloud

– Rapid elasticity
– Pay as you go model

Limitations of VMs
• Each VM stills requires

– CPU allocation
– Storage
– RAM
– An entire guest operating system

• The more VMs you run, the more resources you need
• Guest OS means wasted resources
• Application portability not guaranteed

• Standardized packaging
for software and
dependencies

• Isolate apps from each other

• Share the same OS kernel

• Works with all major Linux
and Windows Server OSes

What is a container?

Comparing Containers and VMs

Containers are an app
level construct

VMs are an infrastructure level
construct to turn one machine

into many servers

Containers and VMs together

Containers and VMs together provide a tremendous amount of
flexibility for IT to optimally deploy and manage apps.

DEV

PROD

Key Benefits of Docker Containers

Speed
• No OS to boot =

applications
online in
seconds

Portability
• Less

dependencies
between process
layers = ability to
move between
infrastructure

Efficiency
• Less OS

overhea
d

• Improved
VM
density

Docker Terminology
Image
The basis of a Docker container. The content at rest.

Container
The image when it is ‘running.’ The standard unit for app service.

Engine
The software that executes commands for containers. Networking and volumes are part
of Engine. Can be clustered together.

Registry
Stores, distributes and manages Docker images.

Control Plane
Management plane for container and cluster orchestration.

Building a Software Supply
Chain

Image Registry

Traditional

Microservices

DEVELOPERS IT
OPERATIONS

Control
Plane

Docker registry
A Docker registry is a storage and distribution system for named Docker images. The same
image might have multiple different versions, identified by their tags.

A Docker registry is organized into Docker repositories , where a repository holds all the
versions of a specific image.
The registry allows Docker users to pull images locally, as well as push new images to the
registry (given adequate access permissions when applicable).

By default, the Docker engine interacts with DockerHub , Docker’s public registry instance.

However, it is possible to run on-premise the open-source Docker registry/distribution, as well
as a commercially supported version called Docker Trusted Registry .

Run your first docker

Docker run
One of the first and most important commands Docker users learn is the docker run
command. This comes as no surprise since its primary function is to build and run containers.

There are many different ways to run a container. By adding attributes to the basic syntax,
you can configure a container to run in detached mode, set a container name, mount a
volume, and perform many more tasks.

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

Docker run
> docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

[...]

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

[...]

Build your own docker

Dockerfile basics

A Dockerfile is a simple text file that contains a list of commands that the Docker client calls
while creating an image.

It's a simple way to automate the image creation process.

The commands you write in a Dockerfile are almost identical to their equivalent Linux
commands: this means you don't really have to learn new syntax to create your own
dockerfiles.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#from

Dockerfile directives(1/3)
FROM

The from directive is used to set base image for the subsequent instructions. A Dockerfile must have
FROM directive with valid image name as the first instruction.

FROM ubuntu:20.04

RUN

Using RUN directing ,you can run any command to image during build time. For example you can
install required packages during the build of image.

RUN apt-get update
RUN apt-get install -y apache2 automake build-essential curl

Dockerfile directives (2/3)
COPY

The COPY directive used for copying files and directories from host system to the image during build.

For example the first commands will copy all the files from hosts html/ directory /var/www/html image
directory.

Second command will copy all files with extension .conf to /etc/apache2/sites-available/ directory.

COPY html/* /var/www/html/
COPY *.conf /etc/apache2/sites-available/

WORKDIR

The WORKDIR directive used to sets the working directory for any RUN, CMD, ENTRYPOINT, COPY
and ADD commands during build.

WORKDIR /opt

Dockerfile directives (3/3)
CMD
The CMD directive is used to run the service or software contained by your image, along with any
arguments during the launching the container. CMD uses following basic syntax

CMD ["executable","param1","param2"]
CMD ["executable","param1","param2"]

For example, to start Apache service during launch of container, Use the following command.

CMD ["apachectl", "-D", "FOREGROUND"]

EXPOSE

The EXPOSE directive indicates the ports on which a container will listen for the connections. After that
you can bind host system port with container and use them.

EXPOSE 80
EXPOSE 443

Sample Dockerfile #1
Given this Dockerfile:

FROM alpine
CMD ["echo", "Hello Tor Vergata!"]

Build and run it:

docker build -t hello .
docker run --rm hello

This will output:

Hello Tor Vergata!

Sample Dockerfile #2

FROM nginx:latest

RUN touch /testfile

COPY ./index.html /usr/share/nginx/html/index.html

Docker build / push

Use Docker build to build your image locally

docker build -t <registry>/<image name>:<tag> .

And Docker push to publish your image on registry

docker push <registry>/<image name>:<tag>

Data persistence

Data persistence
 Docker containers provide you with a writable layer on top to make changes to your running container.

But these changes are bound to the container’s lifecycle: If the container is deleted (not stopped),
you lose your changes.

 Let’s take a hypothetical scenario where you are running a database in a container without any data
persistence configured.

You create some tables and add some rows to them: but, if some reason, you need to delete this
container, as soon as the container is deleted all your tables and their corresponding data get lost.

 Docker provides us with a couple of solutions to persist your data even if the container is deleted.

The two possible ways to persist your data are:

• Bind Mounts
• Volumes

Bind mounts
Bind mounts have been around since the early days of Docker.

When you use a bind mount, a file or directory on the host machine is mounted into a
container.

The file or directory is referenced by its absolute path on the host machine.

By contrast, when you use a volume, a new directory is created within Docker’s storage directory
on the host machine, and Docker manages that directory’s contents.

The file or directory does not need to exist on the Docker host already.
It is created on demand if it does not yet exist.
Bind mounts are very performant, but they rely on the host machine’s filesystem having a specific
directory structure available.
If you are developing new Docker applications, consider using named volumes instead.

Not covered here:
Docker Volumes &

Networking
(research it!)

Docker cheatsheet

Docker ecosystems

Docker compose
Docker Compose is a tool that was developed to help define and share multi-container
applications.

With Compose, we can create a YAML file to define the services and with a single command,
can spin everything up or tear it all down.

Each of the containers here run in isolation but can interact with each other when required.

Docker Compose files are very easy to write in a scripting language called YAML, which is an
XML-based language that stands for Yet Another Markup Language.

version: "3.7"

services:
 app:
 image: node:12-alpine
 command: sh -c "yarn install && yarn run dev"
 ports:
 - 3000:3000
 working_dir: /app
 volumes:
 - ./:/app
 environment:
 MYSQL_HOST: mysql
 MYSQL_USER: root
 MYSQL_PASSWORD: secret
 MYSQL_DB: todos

 mysql:
 image: mysql:5.7
 volumes:
 - mysql-data:/var/lib/mysql
 environment:
 MYSQL_ROOT_PASSWORD: secret
 MYSQL_DATABASE: todos

volumes:
 mysql-data:

Docker orchestration

Docker swarm
Docker swarm is a container orchestration tool, meaning that it allows the user to manage
multiple containers deployed across multiple host machines.

A Docker Swarm is a group of either physical or virtual machines that are running the Docker
application and that have been configured to join together in a cluster.

Once a group of machines have been clustered together, you can still run the Docker
commands that you're used to, but they will now be carried out by the machines in your
cluster.

The activities of the cluster are controlled by a swarm manager, and machines that have
joined the cluster are referred to as nodes.

Kubernetes
Kubernetes is an open source system to deploy, scale, and manage containerized
applications.

It automates operational tasks of container management and includes built-in commands for
deploying applications, rolling out changes to your applications, scaling your applications up
and down to fit changing needs, monitoring your applications, and more.

Application developers, IT system administrators and DevOps engineers use Kubernetes to
automatically deploy, scale, maintain, schedule and operate multiple application containers
across clusters of nodes.

Containers run on top of a common shared operating system (OS) on host machines but are
isolated from each other unless a user chooses to connect them.

Docker playground

https://www.docker.com/play-with-docker/

Questions on Docker / Containers?

44

Ευχαριστώ και καλή μέρα εύχομαι!

Keep hacking!

