AldAggn #1 - DOCker FOUNDATIONS
Basics

EOvIKO kal KatrodioTplako lNavetriotripio ABnvwy

SOFTWARE

Eicaywyr otnv Ao@aAcia

SYSTEMS CRYPTO

@avaonc Auyepivog

HUMANS

Thank you to https://home.infn.it/it/ for their Docker slides!

https://home.infn.it/it/

Tnv Nponyoupevn Popd

1. AladIKaoTIKA
2. 2KOTTOC TOU uaBnuartog
3. ACQAaA&Ia KAl ZUoTNUATA

4. 2X€010 VIO TO pabnua PETOC

5. To mpwrTo pag exploit

AVOKOIVWOEIC / AIEUKPIVIOEIC

EpwTroeI¢ TTou OEXTNKA:
e Eival 6Aa 1ta vulnerabilities TTou Bpiokoupe
YVWOTQ;
o Vulnerability og TpExov Aoyiouiké 0-day
o O Mo eTMKivOUuvocg TUTTOC aduVauiag
e TIKAvauE OTO TTPWTO A exploit;
o Avaloyia ye 1o va avoicouue PDF
ue eévav PDF reader;
e MrTropEi KATTOIOC va dnuioupynoel exploit
XWPIC source;
e AQTITOTT £V WPA NABAMATOC;

‘Zero-Day’ Defined

000
o 011
000

A zero-day vulnerability is a
security software flaw that’s
unknown to someone interested
in mitigating the flaw.

[=al O

A zero-day attack is A zero-day exploit is when

when hackers leverage hackers take advantage of

their zero-day exploit to a zero-day vulnerability for
commit a cyberattack. malicious reasons.

https://en.wikipedia.org/wiki/Zero-day_(computing)

2 NUEPQ

e Docker (Linux / Bash KTA av TTpokUyEl)

Docker Basics

Why: (1) embarrassing not to know, (2) understanding how modern software is
built/packaged/secured today, and (3) to complete our hw :P

History of Docker

2013 Feb 2016
2008 Solomon Hykes Docker introduces first
Linux containers starts Docker as commercial product —
(LXC 1.0) : - now called Docker
_ an internal project) .
introduced within dotCloud Enterprise Edition
Today
2004 Mar 2013 Open source community
Solaris Containers Docker includes:
/| Zones released to _
technology open source - 3,300+ contributors

- 43,000+ stars

introduced
- 12,000+ forks

A History Lesson
In the Dark Ages

One application on one physical
server

Application

| Operating System

Historical limitations of application deployment

« Slow deployment times
* Huge costs
 Wasted resources Application
 Difficult to scale
« Difficult to migrate
* Vendor lock in

Operating System

17

A History Lesson

Hypervisor-based Virtualization

* One physical server can contain multiple applications
« Each application runs in a virtual machine (VM)

)

o ng
system |

B A d LU ‘

Host Operating System

Benefits of VMs

« Better resource pooling
— One physical machine divided into multiple virtual machines
« Easier to scale

 VMs in the cloud
— Rapid elasticity == Microsoft Azure

— Pay as you go model

.l" éfpazon vimware

Services™

Limitations of VMs

Each VM stills requires
— CPU allocation

— Storage

— RAM

— An entire guest operating system

The more VMs you run, the more resources you need
* Guest OS means wasted resources
Application portability not guaranteed

What is a container?

CONTAINER

Static Binary

CONTAINER CONTAINER

Tomcat SQL Server

java NET

Debian Ubuntu

Alpine

Kernel

» Standardized packaging
for software and
dependencies

* |solate apps from each other

 Share the same OS kernel

* Works with all major Linux
and Windows Server OSes

Comparing Containers and VMs

CONTAINER VM

App A App B App C App A App B App C

Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS
Docker

Host OS Hypervisor

Infrastructure Infrastructure

Containers are an app VMs are an infrastructure level
level construct construct to turn one machine
Into many servers

Containers and VMs together

DEV App A App B App C

Bins/Libs | Bins/Libs Bins/Libs

App D

App A App B App C

Bins/Libs Bins/Libs Bins/Libs Docker Docker Bins/Libs

Guest OS Guest OS Guest OS
Docker

Host OS Hypervisor

Infrastructure Infrastructure

Containers and VMs together provide a tremendous amount of
flexibility for IT to optimally deploy and manage apps.

Key Benefits of Docker Containers

Speed Portability Efficiency

* No OS to boot = * Less * Less OS
dependencies overhea

applications
online in between process g
layers = abillity to

Infrastructure VM
densj

Docker Terminology

Image
The basis of a Docker container. The content at rest.

Container
The image when it is ‘running.” The standard unit for app service.

Engine
The software that executes commands for containers. Networking and volumes are part
of Engine. Can be clustered together.

Sges Registry
Stores, distributes and manages Docker images.

, i Control Plane
Management plane for container and cluster orchestration.

Building a Software Supply
Chain

DEVELOPERS o IT

o [OPERATIONS
: i L b2z
Microservices o < > IEI < > “‘LHW
- ! control
ggggggggggg ry Ianel
Traditiona I @ —— M L I l
i) n} My
o> @

Docker registry

A Docker registry is a storage and distribution system for named Docker images. The same
image might have multiple different versions, identified by their tags.

A Docker registry is organized into Docker repositories , where a repository holds all the
versions of a specific image.

The reqistry allows Docker users to pull images locally, as well as push new images to the
registry (given adequate access permissions when applicable).

By default, the Docker engine interacts with DockerHub , Docker’s public registry instance.

However, it is possible to run on-premise the open-source Docker registry/distribution, as well
as a commercially supported version called Docker Trusted Registry .

Run your first docker

Docker run

One of the first and most important commands Docker users learn is the docker run
command. This comes as no surprise since its primary function is to build and run containers.

There are many different ways to run a container. By adding attributes to the basic syntax,
you can configure a container to run in detached mode, set a container name, mount a

volume, and perform many more tasks.

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

Docker run

> docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

[...]

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

[...]

Build your own docker

Dockerfile basics

A Dockerfile is a simple text file that contains a list of commands that the Docker client calls
while creating an image.

It's a simple way to automate the image creation process.
The commands you write in a Dockerfile are almost identical to their equivalent Linux

commands: this means you don't really have to learn new syntax to create your own
dockerfiles.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#from

Dockerfile directives(1/3)

FROM

The from directive is used to set base image for the subsequent instructions. A Dockerfile must have
FROM directive with valid image name as the first instruction.

FROM ubuntu:20.04
RUN

Using RUN directing ,you can run any command to image during build time. For example you can
install required packages during the build of image.

RUN apt-get update
RUN apt-get install -y apache2 automake build-essential curl

Dockerfile directives (2/3)

COPY
The COPY directive used for copying files and directories from host system to the image during build.

For example the first commands will copy all the files from hosts html/ directory /var/www/html image
directory.

Second command will copy all files with extension .conf to /etc/apache2/sites-available/ directory.

COPY html/* ivar/iwww/html/
COPY *.conf /etc/apache2/sites-available/

WORKDIR

The WORKDIR directive used to sets the working directory for any RUN, CMD, ENTRYPOINT, COPY
and ADD commands during build.

WORKDIR /opt

Dockerfile directives (3/3)

The CMD directive is used to run the service or software contained by your image, along with any
arguments during the launching the container. CMD uses following basic syntax

CMD ["executable”,"param1","param2°”]
CMD ["executable”,"param1","param2”]

For example, to start Apache service during launch of container, Use the following command.
CMD ["apachectl”, "-D", "FOREGROUND"]

EXPOSE

The EXPOSE directive indicates the ports on which a container will listen for the connections. After that
you can bind host system port with container and use them.

EXPOSE 80
EXPOSE 443

Sample Dockerfile #1

Given this Dockerfile:

FROM alpine
CMD ["echo”, "Hello Tor Vergata!"]

Build and run it:

docker build -t hello .
docker run --rm hello

This will output:

Hello Tor Vergatal

Sample Dockerfile #2

FROM nginx:latest
RUN touch /testfile
COPY ./index.html /usr/share/nginx/html/index.html

Docker build / push

Use Docker build to build your image locally

docker build -t <registry>/<image name>:<tag> .

And Docker push to publish your image on registry

docker push <registry>/<image name>:<tag>

Data persistence

Data persistence

Docker containers provide you with a writable layer on top to make changes to your running container.

But these changes are bound to the container’s lifecycle: If the container is deleted (not stopped),
you lose your changes.

Let’s take a hypothetical scenario where you are running a database in a container without any data
persistence configured.

You create some tables and add some rows to them: but, if some reason, you need to delete this
container, as soon as the container is deleted all your tables and their corresponding data get lost.

Docker provides us with a couple of solutions to persist your data even if the container is deleted.
The two possible ways to persist your data are:

e Bind Mounts
e Volumes

Bind mounts

Bind mounts have been around since the early days of Docker.

When you use a bind mount, a file or directory on the host machine is mounted into a
container.

The file or directory is referenced by its absolute path on the host machine.

By contrast, when you use a volume, a new directory is created within Docker’s storage directory
on the host machine, and Docker manages that directory’s contents.

The file or directory does not need to exist on the Docker host already.

It is created on demand if it does not yet exist.

Bind mounts are very performant, but they rely on the host machine’s filesystem having a specific
directory structure available.

If you are developing new Docker applications, consider using named volumes instead.

Not covered here:
Docker Volumes &
Networking
(research it!)

Docker cheatsheet

Start a new Container from an Image
docker run IMAGE
docker run nginx

..and assign it aname
docker run --name CONTAINER IMAGE
docker run --name web nginx

..and map a port
docker run -p HOSTPORT:CONTAINERPORT IMAGE
docker run -p 8080:80 nginx

..and map all ports
docker run -P IMAGE
docker run -P nginx

...and start container in background
docker run -d IMAGE
docker run -d nginx

...and assign it a hostname
docker run —-hostname HOSTNAME IMAGE
docker run —--hostname srv nginx

..and add a dns entry
docker run —--add-host HOSTNAME:IP IMAGE

..and map a local directory into the container
docker run -v HOSTDIR:TARGETDIR IMAGE
docker run -v ~/:/usr/share/nginx/html nginx

..but change the entrypoint
docker run -it —-entrypoint EXECUTABLE IMAGE
docker run -it --entrypoint bash nginx

Show a list of running containers
docker ps

Show a list of all containers
docker ps -a

Delete a container
docker rm CONTAINER
docker rm web

Delete a running container

docker rm -f CONTAINER
docker rm -f web

Delete stopped containers
docker container prune

Stop a running container

docker stop CONTAINER
docker stop web

Start a stopped container
docker start CONTAINER
docker start web

Copy a file from a container to the host
docker cp CONTAINER:SOURCE TARGET
docker cp web:/index.html index.html

Copy a file from the host to a container
docker cp TARGET CONTAINER:SOURCE
docker cp index.html web:/index.html

Start a shell inside a running container
docker exec -it CONTAINER EXECUTABLE
docker exec -it web bash

Rename a container
docker rename OLD_NAME NEW_NAME
docker rename 096 web

Create an image out of container
docker commit CONTAINER
docker commit web

Download an image

docker pull IMAGE[:TAG]
docker pull nginx

Upload an image to a repository
docker push IMAGE
docker push myimage:1.0

Delete an image
docker rmi IMAGE

Show a list of all Images
docker images

Delete dangling images
docker image prune

Delete all unused images
docker image prune -a

Build an image from a Dockerfile

docker build DIRECTORY
docker build .

Tag an image
docker tag IMAGE NEWIMAGE

docker tag ubuntu ubuntu:18.04

Build and tag an image from a Dockerfile
docker build -t IMAGE DIRECTORY

docker build -t myimage .

Save an image to tar file
docker save IMAGE > FILE

docker save nginx > nginx.tar

Load an image from a tar file
docker load -i TARFILE
docker load -i nginx.tar

Show the logs of a container
docker logs CONTAINER
docker logs web

Show stats of running containers
docker stats

Show processes of container

docker top CONTAINER
docker top web

Show installed docker version
docker version

Get detailed info about an object
docker inspect NAME
docker inspect nginx

Show all modified files in container
docker diff CONTAINER
docker diff web

Show mapped ports of a container

docker port CONTAINER
docker port web

Docker ecosystems

Docker compose

Docker Compose is a tool that was developed to help define and share multi-container
applications.

With Compose, we can create a YAML file to define the services and with a single command,
can spin everything up or tear it all down.

Each of the containers here run in isolation but can interact with each other when required.

Docker Compose files are very easy to write in a scripting language called YAML, which is an
XML-based language that stands for Yet Another Markup Language.

version: "3.7"

services:
app:

image: node:12-alpine

command: sh -c "yarn install && yarn run dev"

ports:
- 3000:3000

working_dir: /app

volumes:
- .[:lapp

environment:
MYSQL HOST: mysql
MYSQL_USER: root
MYSQL_PASSWORD: secret
MYSQL _DB: todos

mysql:
image: mysql:5.7
volumes:
- mysql-data:/var/lib/mysq|
environment:
MYSQL_ROOT_PASSWORD: secret
MYSQL_ DATABASE: todos

volumes:
mysql-data:

Docker orchestration

Docker swarm

Docker swarm is a container orchestration tool, meaning that it allows the user to manage
multiple containers deployed across multiple host machines.

A Docker Swarm is a group of either physical or virtual machines that are running the Docker
application and that have been configured to join together in a cluster.

Once a group of machines have been clustered together, you can still run the Docker
commands that you're used to, but they will now be carried out by the machines in your

cluster.

The activities of the cluster are controlled by a swarm manager, and machines that have
joined the cluster are referred to as nodes.

Kubernetes

Kubernetes is an open source system to deploy, scale, and manage containerized
applications.

It automates operational tasks of container management and includes built-in commands for
deploying applications, rolling out changes to your applications, scaling your applications up
and down to fit changing needs, monitoring your applications, and more.

Application developers, IT system administrators and DevOps engineers use Kubernetes to
automatically deploy, scale, maintain, schedule and operate multiple application containers
across clusters of nodes.

Containers run on top of a common shared operating system (OS) on host machines but are
isolated from each other unless a user chooses to connect them.

Docker Swarm

No Auto Scaling

Good community

Easy to start a cluster

Limited to the Docker API’s capabilities

Does not have as much experience with

production deployments at scale

Kubernetes

Auto Scaling

Great active community

Difficult to start a cluster

Can overcome constraints of Docker
and Docker API

Deployed at scale more often among
organizations

Docker playground

Play with Docker

A simple, interactive and fun playground to learn Docker

https://www.docker.com/play-with-docker/

Questions on Docker / Containers?

44

EuxapioTw Kal KOAR pEpa euyouai!

Keep hacking!

